
26th August 2014

SHARED MEMORY IN THE
MANY-CORE AGE

Stefan Nürnberger, Gabor Drescher,
Randolf Rotta, Wolfgang
Schröder-Preikschat, and Jörg Nolte

BTU Cottbus-Senftenberg
FAU Erlangen-Nuremberg



DISTRIBUTED SHARED MEMORY. . .

What does it provide?

enable shared memory programming where hardware does not (directly)

either in HW (e.g. Cache Coherence), HW/SW (e.g. most page-based
DSMs), SW (Global Arrays, X10, PGAS systems, . . . )

Can simplify programming:

handling of complex and dynamic data dependencies

decouples task scheduling from data placement

enables load balancing when data dependencies are unknown upfront

1 ·The Case for DSM in the Many-Core Age 2



. . . FOR MANY-CORE SYSTEMS???

Hardware Characteristics changed!
Many-Core hardware looks vastly different from what DSM systems were
designed for in the past.

New Memory Models!
Shared memory programming came a long way in defining sane semantics
for concurrent memory access.

Programming Environments evolved!
DSM will coexist and cooperate with other programming models.

1 ·The Case for DSM in the Many-Core Age 3



A NEW GOLDEN AGE FOR DSM RESEARCH?

1. Many-Core Challenges

2. Memory Model Opportunities

3. Building Blocks for a DSM System

1 ·The Case for DSM in the Many-Core Age 4



A CHANGE IN ARCHITECTURE

past: network of single-cores

today: network of multi- and many-cores (e.g. Xeon Phi)

General many-core implications:

hardware provides basic consistency within node

intra-node parallelism is mandatory

low-latency networks vs. slow cores

inherent NUMA hierarchy

2 ·Many-Core Challenges 5



MUST EXPLOIT CONSISTENCY ISLANDS

Powerful Memory Model within Consistency Islands

illusion of shared memory

observability of stores within the island

synchronizing memory operations

Between Consistency Islands

networks provide remote memory access

consistency does not scale-out across nodes

no observability of stores in other islands

limited memory order enforcement

Why are they important?

separate replica for each thread waste memory and cache space

can use efficient hardware caches

threads sharing replica split cost of management
2 ·Many-Core Challenges 6



MUST EXPLOIT PARALLELISM

Remote memory is quite fast

typical remote memory access (IB put/get) is ∼ 2µs

latency of approx. 8 cache misses (∼ 260 cycles/miss)

⇒ low overhead management is a must

⇒ parallelize DSM protocol/management

The effect of Huge Pages

using 2MB pages instead of 4k increases TLB reach (important!)

page-based DSM needs to deal with factor ×512 in size

⇒ parallelize and vectorize diff/merge

2 ·Many-Core Challenges 7



A CHANGE IN MEMORY MODELS

past: evade communication, hide latency

today: be explicit about concurrency

DSM inspired memory models
“What can we optimize? How can we eliminate synchronization overhead?”

DSM systems introduced memory models that fit their protocol

non-uniform models: (Lazy) Release Consistency, Scope Consistency,
. . .

Uniform vs. non-uniform models

uniform models consider only data read and write

non-uniform models add explicit synchronization primitives

3 ·Memory Model Opportunities 8



CONSISTENCY IS RELAXED TODAY

The Memory Consistency Model
describes a memory abstraction’s behavior and what
measures are provided to make it behave!

Relaxed Memory Models
Use relaxation of memory consistency for optimization

HW: start from weak model and add measures (e.g. fences) to
strengthen (e.g. Sparc-TSO, ARM, . . . )

SW: start from strong model and add hints (annotations) to
weaken (e.g. C/C++11 with low level atomics)

3 ·Memory Model Opportunities 9



DATA RACES VS. CONSISTENCY

There is no benign data race!
all data races threaten consistency, operation outcome is undefined

⇒ guarantee SC for DRF only (or probably SC for HRF)

⇒ further relaxations based on C++11 model

3 ·Memory Model Opportunities 10



AND THEN THERE’S TM

Transactional Memory affects the whole Memory Model

not a trivial thing (see Intel TSX bug)

reactive data race freedom

expected to allow lock elision

Software Transactional Memory

Language extensions for transactions available

provides data access and modification tracking in transactions

⇒ viable alternative to access traps of page-based DSM

3 ·Memory Model Opportunities 11



A CHANGE IN USAGE STRATEGY

past: “one size fits all” approach

today: in combination with PGAS, function shipping, message
passing

The former DSM approaches

Wrappers running legacy code (wrap C-library calls, OS-based)
Library/Framework based

Threads cannot be implemented as library (H.-J. Boehm)

Language embedded

A future for DSMs. . .

use DSM below the programming model, not as programming model

Enable use of modern memory models across clusters

Most programs benefit from caching (in general)

⇒ Think: ‘PGAS + Caching’, ‘Software Managed Caches’

4 ·Building Blocks for a DSM System 12



FROM APPLICATION TO PLATFORM

optimal DSM strategy depends on target programming/memory model,
access patterns, hardware characteristics, . . .

evaluate many protocols with common mechanisms

⇒ need infrastructure (framework) for the commonalities and variabilities

Applications
Memory Models:
Release/Entry, 
C++11, STM...

Elementary Operations

Hardware Platforms:
many-core processors,
heterogeneous clusters...

Communication Layer

4 ·Building Blocks for a DSM System 13



ELEMENTARY MECHANISMS

Elementary PGAS operations

Allocators for globally coordinated memory management

Remote memory access

Atomic memory operations

Thread groups to represent consistency islands

Elementary operations for replication

Replica management
creation / update / invalidation
asynchronous replica notifications
including efficient replica group update/invalidation

Diff/Merge mechanism,

Access tracking for read and write access to each replica,

Versioned modification management

4 ·Building Blocks for a DSM System 14



WHERE DO WE GO FROM HERE?

implement minimal event-driven kernel

implement basic mechanism on top of kernel

envisioned as lightweight "firmware" for many-core consistency

Research Projects

COKE consistency kernel exploring elementary operations

MyThOS many threads operating system

OctoPOS includes evaluation of new memory models

5 ·Conclusions 15



CONCLUSIONS

It is an interesting time to do DSM research again

Consistency Islands need to be exploited

Overhead of replica management is challenging

Memory Consistency Models changed dramatically

C/C++11, SC for DRF, . . . for software portability

Old DSM models are not the best fit, inhibit portability

Infrastructure for DSM is needed

DSMs share common tasks (allocate, update/invalidate, . . . )

Elementary operations allow for experimental implementations

5 ·Conclusions 16


	Many-Core Challenges
	Memory Model Opportunities
	Building Blocks for a DSM System

