
A Study of Network Quality of 
Service in Many-Core MPI 

Applications

Lee Savoie1, David Lowenthal1, Bronis de Supinski2, 
Kathryn Mohror2

1The University of Arizona, 2Lawrence Livermore National Laboratory



Introduction

2

• Core counts increasing in high performance computing 
(HPC)

• Many machines already include many-core accelerators
• Many-core nodes process more data
• The network must work harder to transfer data between 

nodes



Network Contention

3

“There goes the neighborhood: performance degradation due to nearby jobs”
(Bhatele et al., SC 13)



Fat-tree Contention

4

• HPC systems with many-core nodes need better network 
management



Quality of Service (QoS)

5

• Most networks provide QoS mechanisms for network 
management

• In Infiniband:
• Packets are marked with a service level (SL)
• Each SL has a priority

SL 1, priority 1

SL 2, priority 3
Network



Research Question

6

• Can we improve the performance of contending jobs on 
HPC systems using QoS?
• This will enable HPC systems to handle the increased data demands of 

many-core nodes.

• This work focuses on per-job QoS
• Each job runs in a separate service level
• Each job is guaranteed a minimum amount of bandwidth



Experimental Set Up

7

• 300 node machine
• Left 20 nodes free in case of failures
• No other jobs running

• Service levels with priorities 2286:254:9:1
• Applications

• QBox
• Crystal Router
• MILC
• pF3D

• Micro-benchmarks



Micro-Benchmarks

8

Flood-Pairs Nearest-Neighbor

All-to-all Random-Pairs



Methodology

9

• Ran 4 jobs at a time
• 70 nodes each
• 22 ranks per node

• Assigned nodes to jobs randomly
• Repeated tests several times with different node assignments

• Restarted each job when it completed to maintain 
contention profile until all jobs completed at least once

• Ran the following tests
• Ideal – each job running in isolation
• Default – all jobs in the same service level
• All assignments of jobs to 4 service levels



Results: Micro-Benchmarks

10

• Per-job QoS is insufficient to improve performance.



Flood-pairs Rank Timing

11

• Only a few ranks need to be prioritized.



Nearest-neighbor Rank Timing

12

High Priority Contended



Nearest-neighbor Rank Timing

13

High Priority Contended



Nearest-neighbor Rank Timing

14

High Priority Contended



Nearest-neighbor Rank Timing

15

High Priority Contended



Nearest-neighbor Rank Timing

16

High Priority Contended



Nearest-neighbor Rank Timing

17

High Priority Contended



Per-Rank QoS

18

• Prioritizing an entire job gives high priority to some ranks 
that are already fast.

• This slows down other jobs, erasing any throughput 
improvement.

• What if we prioritize only the slowest ranks?
• Requires prioritizing only ~10% of ranks
• Same performance as prioritizing the entire job
• Expect significant reduction in impact on other jobs

• This is the subject of ongoing research



Related Work

19

• QoS has been studied for a long time
• Jokanovic et al. (2012) came to opposite conclusions

• Segregate jobs into SLs with different priorities
• 59% contention reduction
• Possible reasons for the difference:

• Simulation vs hardware
• Future vs current hardware
• Different service levels



Different Service Levels

20

• QoS in HPC deserves more research



Conclusion

21

• Many-core nodes will require efficient networks to move 
data around

• Simple, per-job QoS is unlikely to improve performance
• Differs from previous work

• Per-rank QoS is more promising
• Further research is needed to understand QoS in HPC

lsavoie@cs.arizona.edu
http://www.cs.arizona.edu/people/lsavoie/

http://www.cs.arizona.edu/people/lsavoie/


Backup

22



Per-Job QoS

23

Job 1, priority 1

Job 2, priority 3 Network

Job 3, priority 2

Job 1

Job 2 Network

Job 3

No QoS:

QoS:



Related Work

24

• QoS has been applied to:
• The internet [Blake 1998]
• Video streaming [Ke 2005, Kumwilaisak 2003]
• Clouds and data centers [Voith 2012]
• Wireless networks [Andrews 2001]

• Divide traffic across SLs with the same priority to avoid 
head of line blocking [Subramoni 2010, Guay 2011]
• We use service levels with different priorities

• Other methods of dealing with contention
• Adaptive routing [Jain 2014]
• Job placement [Yang 2016, Jokanovic 2015]
• These methods are complimentary to ours and insufficient on their 

own



Results: Applications

25

• Per-job QoS is insufficient to improve performance.


