
Popcorn Linux:
System Software for
Heterogeneous Hardware

Sang-Hoon Kim
Postdoctoral Associate

Systems Software Research Group

May 25, 2018

Trend towards heterogeneous systems

• Clear that microprocessor trends have shifted since 2005

2

[https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data]

Limited single thread performance
• Thermal and power budget
• Dark silicon effect

Increase core counts

Exploit heterogeneity

Specialize cores

Micro-architectural heterogeneity is already here

3

Compute capacity
(Performance)

Power

Energy-efficient
LITTLE cores

High-performance
big cores

ARM DynamIQ / big.LITTLE

iPhone X Galaxy S8

Micro-architectural heterogeneity is already here

4

Compute capacity
(Performance)

Power

Energy-efficient
LITTLE cores

High-performance
big cores

ARM big.LITTLE / DynamIQ

iPhone X Galaxy S8

But only for homogeneous instruction set architecture (ISA)

Can we utilize heterogeneous-ISA?

Different ISA, different execution profile

• “Harnessing ISA Diversity: Design of a Heterogeneous-ISA

Chip Multiprocessor,” Venkat and Tullsen (UCSD), ISCA’14

– RISC vs CISC

– Register memory architecture vs load/store architecture

– Vector instruction support (e.g., SIMD)

– Power efficiency per instruction

– Pipeline depth

– Degree of parallelism

5

Different ISA, different execution profile

• “Harnessing ISA Diversity: Design of a Heterogeneous-ISA
Chip Multiprocessor,” Venkat and Tullsen (UCSD), ISCA’14

6

Phase 2Phase 1

Performance of bzip2 for different peak power budgets

alpha

x86

x86

alpha

ISA affinity opens up opportunities

• Can improve performance and energy consumption by
migrating work to an optimal-ISA node

7

• Alpha

Homogeneous
• big Alpha
• medium Alpha
• little Alpha

Single-ISA
• ARM’s thumb
• x86_64
• Alpha

Heterogeneous-ISA

EDPPerformance

Challenges in exploiting the ISA affinity

• Relocate execution across machine boundaries

– Single-chip/board heterogeneous-ISA architecture is not available

– Not obvious even between homogeneous-ISA machines

• Deal with discrepancies between ISAs

– Let assume ISAs have the same endian and primitive data type size

– However, register set, stack layout, executable layout, …

• Want to run applications as-is

– Cost(developer/software) >>>> cost(hardware)

– Can enable future-proofing – important for legacy!

8

Popcorn Linux considers programmability

9

void full_verify(void)
{
MPI_Status status;
MPI_Request request;
INT_TYPE i, j;
INT_TYPE k, last_local_key;

for(i=0; i<total_local_keys; i++)
key_array[--key_buff_ptr_global[key_buff2[i]]- total_lesser_keys]

= key_buff2[i];
last_local_key = (total_local_keys<1)? 0 : (total_local_keys-1);

if(my_rank > 0)
MPI_Irecv(&k, 1, MP_KEY_TYPE, my_rank-1, 1000, MPI_COMM_WORLD,

&request);
if(my_rank < comm_size-1)
MPI_Send(&key_array[last_local_key], 1, MP_KEY_TYPE, my_rank+1,

1000, MPI_COMM_WORLD);
if(my_rank > 0)
MPI_Wait(&request, &status);

...
}

MPI

void full_verify(void)
{
cl_kernel k_fv0, k_fv1;
cl_mem m_j; cl_int ecode;
INT_TYPE *g_j;
INT_TYPE j = 0, i;
size_t j_size;
size_t fv0_lws[1], fv0_gws[1];
size_t fv1_lws[1], fv1_gws[1];

j_size = sizeof(INT_TYPE) * (FV2_GLOBAL_SIZE / FV2_GROUP_SIZE);
m_j = clCreateBuffer(context, CL_MEM_READ_WRITE, j_size, NULL, &ecode);

k_fv1 = clCreateKernel(program, "full_verify1", &ecode);
k_fv0 = clCreateKernel(program, "full_verify0", &ecode);

ecode = clSetKernelArg(k_fv0, 0, sizeof(cl_mem), (void*)&m_key_array);
ecode |= clSetKernelArg(k_fv0, 1, sizeof(cl_mem), (void*)&m_key_buff2);
fv0_lws[0] = work_item_sizes[0];
fv0_gws[0] = NUM_KEYS;
ecode = clEnqueueNDRangeKernel(cmd_queue, k_fv0, 1, NULL,

fv0_gws, fv0_lws, 0, NULL, NULL);

ecode = clSetKernelArg(k_fv1, 0, sizeof(cl_mem), (void*)&m_key_buff2);
ecode |= clSetKernelArg(k_fv1, 1, sizeof(cl_mem), (void*)&m_key_buff1);
fv1_lws[0] = work_item_sizes[0];
fv1_gws[0] = NUM_KEYS;
ecode = clEnqueueNDRangeKernel(cmd_queue, k_fv1, 1, NULL,

fv1_gws, fv1_lws, 0, NULL, NULL);
...
}

OpenCLvoid full_verify(void)
{
INT_TYPE i, j;

for(i=0; i<NUM_KEYS; i++)
key_buff2[i] = key_array[i];

for(i=0; i<NUM_KEYS; i++)
key_array[--key_buff_ptr_global[key_buff2[i]]]

= key_buff2[i];
...
}

Serial

NPB IS

Popcorn Linux

Software framework
to run applications “as-is”

on heterogeneous-ISA hardware

10

http://popcornlinux.org

Outline

• What for heterogeneous-ISA systems?

• Introduction to Popcorn Linux

• Our approaches in Popcorn Linux
– Compiler
– Runtime
– Operating System

• Ongoing work

Previously:

Popcorn Linux for replicated kernels
• Run multiple kernels on a single system

– Run a kernel on a subset of processors in a system
– Primarily for OS scalability

• Provide a single system image over the multiple kernels

• Migrate processes across the kernel boundary

OS 0 OS 1 OS 2

Single operating system image

Core 0 Core 1 Core 2 Core 3

13

Popcorn Linux for heterogeneous ISAs

• Extend the replicated kernel concept over multiple nodes
– Exploit the execution migration feature

• Allow threads in a process to be split over multiple nodes

• Support execution migration across ISA-different nodes

x86 OS ARM OS

Single operating system image

x86 Core 0 x86 Core 1 ARM Core 0 ARM Core 1

Memory
consistency

protocol

High-speed low-latency interconnect 14

• “Breaking the boundaries in heterogeneous-ISA
datacenters,” Barbalace et al., ASPLOS’17
– Workload sets drawn from HPC benchmark suite (NPB)
– Yields 30% energy savings on average (max is 66% for set-3)

 0

 50

 100

 150

 200

E
ne

rg
y

 C
on

su
m

pt
io

n
(k

J)

static x86(1)
static x86(2)

balanced x86
balanced ARM

 0
 50

 100
 150
 200

set-0 set-1 set-2 set-3 set-4 set-5 set-6 set-7 set-8 set-9 avg

E
D

P
(J

*1
e6 s

)

 0

 50

 100

 150

 200

E
ne

rg
y

 C
on

su
m

pt
io

n
(k

J)

static x86(1)
static x86(2)

balanced x86
balanced ARM

 0
 50

 100
 150
 200

set-0 set-1 set-2 set-3 set-4 set-5 set-6 set-7 set-8 set-9 avg

E
D

P
(J

*1
e6 s

)

66% gain! 30%

Popcorn Linux yields performance and energy
gains over homogenous-ISA

15

How Popcorn Linux work?

16

Application
source (.c)

Popcorn
Kernel

Popcorn
Kernel

Popcorn
Runtime

Popcorn
Runtime

Popcorn compiler
toolchain

Process

Popcorn
Multi-ISA

Binary

Process

Compiler: Generate multi-ISA binary

Runtime: Transform dynamic,
ISA-specific program states

Kernel: Migrate execution and
provide a distributed execution

environment

Popcorn Compiler

Compilation

• Built on top of clang/LLVM

• Application source lowered into LLVM IR

– Insert migration points

• Migration only at “equivalence points”; e.g., function entry/exit

– Analyze liveness of variables

• IR passed through each ISA backend for generating code

– Instrumentation to generate metadata (e.g., live locations)

• A post-process aligns code and data in uniform layout

17

Popcorn Compiler

Multi-ISA binary
• Migratable across ISAs

– Single .data section, multiple .text
sections (one per-ISA)

– Global data (.data), code (.text)
and TLS aligned across all
compilations
• Pointers are valid across all ISAs

– State transformation metadata
• Added to binary for translating

registers/stack between ISA-specific
formats

Multi-ISA Binary

Data x86_64
code

ARM64
code RISC-V

code

Transform
metadata

Popcorn
C

om
piler

Toolchain

Post-
Processing

Link

CompileC/C++
Source

Popcorn Compiler

Multi-ISA binary
• Migratable across ISAs

– Single .data section, multiple .text
sections (one per-ISA)

– Global data (.data), code (.text)
and TLS aligned across all
compilations
• Pointers are valid across all ISAs

– State transformation metadata
• Added to binary for translating

registers/stack between ISA-specific
formats

19

Popcorn Runtime

• Transform registers and stack between ISA-specific formats
– Refer to the transformation metadata in the binary

• Two-phase process
– Read compiler metadata describing function activation layouts
– Rewrite stack in its entirety from source to destination ISA format

• After transformation, runtime invokes migration
– Pass destination ISA’s register state and stack to OS

20

Popcorn Runtime

Stack transformation

21

3

2

1

baz() call frame

bar() call frame

foo() call frame

Source Destination

Function: baz
Call site: 10

Call frame size: 32 bytes
Return address: 0x410548

Function: baz
Call site: 10

Call frame size: 48 bytes
Return address: 0x410532

Top of
Stack

Function: bar
Call site: 37

Call frame size: 16 bytes
Return address: 0x410204

Function: bar
Call site: 37

Call frame size: 32 bytes
Return address: 0x410198

Function: foo
Call site: 193

Call frame size: 32 bytes
Return address: 0x412820

Function: foo
Call site: 193

Call frame size: 40 bytes
Return address: 0x412700

Popcorn Runtime

Stack transformation

Function: bar
Call site: 37

Call frame size: 32 bytes
Return address: 0x410198

Function: foo
Call site: 193

Call frame size: 40 bytes
Return address: 0x412700

22

Popcorn Runtime

Stack transformation

23

Popcorn
Kernel

Invoke migration

Register set mapped to
target architecture

Stack

Popcorn Kernel

• Based on Linux kernel v4.4.55
– Working on x86-64 and aarch64

• Tried to be architecture-agnostic
– Except for register and PTE manipulation

24

• Relocate/distribute threads
over multiple nodes

• Migrating entire memory is infeasible
• Should provide sequential consistency

Popcorn Kernel

Migrating execution
• Equivalent to context switching across machines

• At origin: Save the execution context
– The runtime provides the register set
– thread_struct + mm_struct

• At remote: Restore the context on a thread
– Fork a kernel thread, and downgrade it to a user thread
– Construct mm_struct and associate it with the thread
– Setup register set and thread_struct
– Return from the kernel space
è Resume execution as if returned from system call

Exec.
contexts

Exec.
contexts

Origin Remote

25

Distributed thread execution in action

26

Node 1 (Origin)Node 0 (Remote) Node 2 (Remote)

High-speed low-latency interconnect

Remote thread

Multiple
thread relocationOriginal threads

Remote
threadsExclusive page

access for writes

Shared page access
for reads

Fetch VMA
on demand

View from
applications

Actual execution
Single thread

migration

Rack 0
Writable page

Readable page

VMA

Invalid page

Process A

1 20 3

1 20 3

3’ 2’

0’

Providing a consistent memory view to
distributed threads
• The origin controls the ownership and data

– Origin owns all pages in the beginning
– Contact origin to get an ownership and data for pages

• Read-replicate, write-invalidate protocol at page
granularity
– To exploit the common cases in memory-intensive workloads

• Implemented in the virtual memory system in operating
system
– Transparent to the application’s perspective

27

Exclusive No permissionShared

Origin

Remote 0

Remote 1 R2

W1R1

Revoke

R3

Local

Shared Exclusive

Write

Read

Write

Read

Write

Read

Taming concurrent page faults with
leader/follower model
• Coalesce multiple faults and handle with a single operation

• Leader
– The first thread that starts a page fault operation

for a page at a moment
– Execute the fault handling operation for the page

• E.g., bring the page from remotes, fix up page table,
flush TLB, …

• Followers
– Threads that can utilize the leader’s outcome
– Wait for the completion of the leader’s fault handling

• Otherwise
– Wait or retry

28

Local
write

Local
read

Remote
read

0xbeef000

0xbeee000

0xbef0000

… …

Reducing false page sharing

• Inherent in page-level consistency protocol
– A page can bounce between nodes if they access different data

object in the same page

• Behavior analysis tool helps to identify false page sharing
– Analyze page fault events collected in profiling mode
– Pinpoint to the location in code

• # of faults, type of faults, type of program objects

29

Reducing false page sharing

• Inherent in page-level consistency protocol
– A page can bounce between nodes if they access different data

object in the same page

• Behavior analysis tool helps to identify false page sharing
– Analyze page fault events collected in profiling mode
– Pinpoint to the location in code

• # of faults, type of faults, type of program objects

30

Application Mod. Lo
C Application Mod. LoC

Simpl
e Grep +21 -12 PARSEC Blackscholes - -

Kmeans +6 -3

NPB Common +1 -1 Polymer Common +86 -67

BT +5 -2 BFS +10 -4

EP +2 -1 BP +13 -10

FT +1 -1 PageRank +32 -30Took 4 days for a Ph.D. student
to reduce false page sharing from 9 applications

The memory consistency protocol allows
applications to scale their performance

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

1 2 3 4 5 6 7 8

N
or
m
al
iz
ed
pe
rfo
rm
an
ce

(a) GRP

0.0
0.5
1.0
1.5
2.0
2.5
3.0

1 2 3 4 5 6 7 8
(b) KMN

0.0
0.2
0.4
0.6
0.8
1.0
1.2

1 2 3 4 5 6 7 8
(c) BT

0.0
1.0
2.0
3.0
4.0
5.0
6.0

1 2 3 4 5 6 7 8
(d) EP

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8
(e) FT

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8
(f) BLK

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8
(g) BFS

0.0
2.0
4.0
6.0
8.0
10.0
12.0

1 2 3 4 5 6 7 8
(h) BP

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

1 2 3 4 5 6 7 8
(i) PR

Initial
Optimized

31

Results from 8 homogeneous x86 nodes

Summary: How Popcorn Linux work?

• Compiler generates “multi-ISA” binaries
– .text for every ISA (symbol-aligned)
– One .data for the entire machine (symbol-aligned)

• Runtime transforms dynamic ISA-specific program state
– Stack, registers, etc, re-written on the fly

• Operating system migrates execution and provides a
consistent execution environment across machines
– Guarantee sequential data consistency to distributed threads

32

Ongoing work

• Towards a heterogeneous rack-scale system
– Previously: ARM + x86 prototype platform

33

– aarch64
• APM883208-X1

– 8 cores @2.4GHz

• 16GB RAM, PCIe 8x

– x86_64
• Intel Xeon E5-1650v2

– 6 cores 2HT @3.50 GHz

• 16GB RAM, PCIe 8x

x86ARM

Dolphin
PXH810

Dolphin
PXH810

PCIe PCIe

Rack-scale prototype platform

Currently on-line
• 8 Intel Xeon (x86_64)
• 8 Cavium ThunderX (ARM64)

Working on
• APM X-Gene2
• IBM Power8
• RISC-V

34

Interconnects

• Dolphin interconnect
– Dolphin PXH810 over PCIe up to 56Gb/s

– Between tightly coupled nodes

• InfiniBand
– Mellanox ConnectX-4/3 NICs and SX6036 switch up to 56Gb/s

– Utilize Remote DMA (RDMA) feature

– For global communication

• Ethernet
– Based on the standard TCP/IP and sockets

– As a standard, versatile interconnect

35

Ongoing work

• Towards a heterogeneous rack-scale system

• Incorporate more heterogeneity
– IBM Power8

– RISC-V

• Task scheduling in a heterogeneous-ISA rack

• Popcorn as a security infrastructure
– E.g., Increase entropy to prevent ROP attacks

• Cross-ISA execution in a virtualization setting

36

37

Thank you!

* Popcorn Linux Team *
Supervising: Changwoo Min, Binoy Ravindran

Compiler, runtime: Anthony Carno, Mohamed Karaoui, Robert
Lyerly

Kernel: Horen Chuang, Sang-Hoon Kim

Backup slides

38

Performance and energy gains over
homogenous-ISA

39

 0

 50

 100

 150

 200

E
ne

rg
y

 C
on

su
m

pt
io

n
(k

J)

static x86(1)
static x86(2)

balanced x86
balanced ARM

 0
 50

 100
 150
 200

set-0 set-1 set-2 set-3 set-4 set-5 set-6 set-7 set-8 set-9 avg

E
D

P
(J

*1
e6 s

)

• Workload sets drawn from
HPC benchmark suite (NPB)

• Smaller the energy-delay
product, the better

ü Popcorn yields 30% energy savings on
average (max is 66% for set-3)

ü Popcorn yields 11% reduction in EDP

66% gain! 30%

11%

[“Breaking the boundaries in heterogeneous-ISA
datacenters,” Barbalace et al., ASPLOS’17]

ISA affinity opens up opportunities
– “The Impact of ISAs on Performance,” Akram and Sawalha,

WDDD/ISCA’17
– “OS Support for Thread Migration and Distribution in the Fully

Heterogeneous Datacenter,” Olivier et al., HotOS’17

PARSEC blackscholes

40

Motivation

• Proliferation of
heterogeneous-ISA platforms
– Discrete

• Xeon Phi, GPUs
– Integrated On-Die/SoC

• CPU + GPU (AMD A-series)
• CPU + Accelerator Slices (Tilera

TILEncore Gx-series)
• CPU + GPU + DSP + … (Qualcomm

Snapdragon)

• Mix of OS & non-OS capable

41

Instruction Set Architecture (ISA)

42

Reduced Instruction Set Computer (RISC) Complex Instruction Set Computer (CISC)

Sourc
e

Code

AR
M

C

om
piler

Binary Emitter

Optimization

Language
Parser

x86 C
om

pilerBinary Emitter

Optimization

Language
Parser

Popcorn compilation

• Built on top of clang/LLVM
– clang/LLVM 3.7.1, GNU gold 2.27 (~12.4k LoC)
– Address space alignment (~700 LoC), post-processing (~1.7k LoC)

tools
– State transformation/migration libraries (~5.9k LoC)
– Minor updates to musl-libc 1.1.18, libelf, and GNU OpenMP runtime

43

State Transformation

• How fast is state transformation?
– Reference: typically scheduling is done at every 10 milliseconds

44

Migration Points

45

Significant rewriting cost:
NPB example

• From shared memory/OpenMP to MPI

• From serial code to OpenCL

Benchmark CG EP FT IS MG
OpenMP LOC 1150 297 1106 1108 1481
MPI modified 98% 44% 98% 46% 97%

OpenMP and MPI version of NASA NPB

Benchmark CG EP FT IS MG
Serial LOC 506 163 606 454 852
OpenCL added 303

%
164
%

143
%

177
%

189%
OpenCL and serial version of SNU NPB

“Popcorn: bridging the programmability gap in heterogeneous-ISA
platforms,” A. Barbalace et al., EuroSys, 2015.

46

Thread migration in action

47

VMA
Map

Kernel 2Kernel 1

Single System ImageOriginal thread Remote threadVMA
Map

str x1, [sp,#0xbeef]

Page fault at sp + 0xbeef

send page containing
sp + 0xbeef

Migrate to ARM

.te
xt

(x
86

)
.text(A

R
M

)

Page fault at @str

Popcorn Kernel

Provide
consistent
memory

Migrate
threads

48

The Rack

• Bundle
– The building block for “The Rack”
– A set of nodes that are tightly-coupled each other

• To control the latency of memory consistency protocol

• Bundles are connected via a high-speed
switching interconnect

ARM

x86

49

The Rack

ARM affinity thread

x86 affinity thread Bundle 0

ARMv8

Xeon

PCIe

Application

Bundle 2

ARMv8

Xeon

Bundle 3

ARMv8

Xeon

Bundle 1

ARMv8

Xeon

InfiniBand interconnect

50

