
Presenter: Surabhi Jain

Contributors: Surabhi Jain, Gengbin Zheng, Maria Garzaran, Jim Cownie, Taru Doodi,
and Terry L. Wilmarth

May 25, 2018
ROME workshop (in conjunction with IPDPS 2018), Vancouver, Canada

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Notices

Acknowledgment: This material is based upon work supported by the U.S. Department of Energy and Argonne National Laboratory
and its Leadership Computing Facility under Award Number(s) DE-AC02-06CH11357.

Disclosure Notice: This report/presentation was prepared as an account of work sponsored by an agency and/or National Laboratory
of the United States Government, in. Neither the United States Government nor any agency or National Laboratory thereof, nor any
of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency or National Laboratory thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency or National Laboratory thereof.

Access to this document is with the understanding that Intel is not engaged in rendering advice or other professional services.
Information in this document may be changed or updated without notice by Intel.

This document contains copyright information, the terms of which must be observed and followed.

Reference herein to any specific commercial product, process or service does not constitute or imply endorsement, recommendation,
or favoring by Intel or the US Government.

Intel makes no representations whatsoever about this document or the information contained herein. IN NO EVENT SHALL INTEL BE
LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS
DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

2

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Example: Hybrid (MPI+OpenMP*) Application

• Machine supports 4 threads
(including hyperthreading)

• 1 MPI rank, 4 threads per
rank

MPI LibraryApplicationTime

Use omp parallel for

Use omp parallel for

OVERSUBSCRIPTION !!!

* Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Motivation and Goal

Motivation:

Applications run using hybrid programming models (MPI+X)

– X=OpenMP, TBB, Pthreads

– Application threads run the computation code in parallel

– Usually only one thread calls the MPI library

Goal:

To have an MPI library that runs using multiple threads which do not compete
with the application threads (avoid oversubscription)

4

* Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Approaches (MPI+X, X = OpenMP)

5

Thread Partitioning

 Partition the threads. Dedicate n threads to MPI and rest to OpenMP

Modify OpenMP library

 OpenMP tells MPI the number of idle threads

 Spawn “number of idle threads” threads in MPI

 MT-MPI: Multithreaded MPI for many-core Environments, ICS’14 by Si et al.

Create tasks in MPI (Our approach)

 Tasks can be executed by idle application threads

 Does not spawn additional threads in MPI, no oversubscription

 No modifications required in OpenMP

 Maps well to any library which supports a tasking model e.g. OpenMP, TBB

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ways to share threads between MPI and OpenMP

Dedicated
threads for MPITime

Thread partitioning Our approach (using Tasks)

6

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Our approach orthogonal to MPI_THREAD_MULTIPLE

Do not expect much benefit with MPI_THREAD_MULTIPLE

 Parallelism comes from several threads concurrently calling MPI

 Fewer threads are idle to execute MPI tasks

7

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Creating OpenMP tasks in MPI
if(omp_in_parallel()) {

//Create tasks for what MPI wants to do in parallel

//which will run on idle pre-existing OpenMP threads

#pragma omp taskwait

/* All tasks we created have completed when we get here */

} else {

/* No pre-existing parallelism so create some */

#pragma omp parallel

{

#pragma omp single nowait

{

//Create tasks for what MPI wants to do in parallel

}

}

/* All tasks we created have completed when we get here */

}

8

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Where to create tasks inside MPI?

• Shared memory communication

• Packing/unpacking of non-contiguous data

9

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Shared Memory Communication

(a) Sequential Data Copying (b) Parallel Data Copying

• Sender and receiver rank on the same node, use intermediate shared buffer for
large messages

• Pipelined Double Copy approach- sender can copy to next cell(s), while receiver is
copying from previous cell(s)

• Find balance between pipeline parallelism and task based parallelism

10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Pack/Unpack non-contiguous data

Derived types

 Constructed from existing types (basic and derived). E.g. MPI_Type_indexed,
MPI_Type_vector, MPI_Type_struct

 Each task can pack/unpack one or more blocks

Stride = 8
Block_length = 5
Num_blocks = 6

Stride Block_length

Num_blocks

Packing MPI_Type_vector

11

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Experimental Setup

• Intel® Xeon Phi Processor 7210 (1.3 GHz, 64 cores, 4 threads/core) (Knights
Landing)

• 32KB L1 data and instruction cache, 1MB L2 cache

• 96GB DDR, 16GB MCDRAM

• KNL memory mode – Flat, cluster mode – Quadrant, No SNC

• Data placed on MCDRAM (using numactl –m 1)

• Compiler from Intel® Parallel Studio XE Composer Edition for C++ (version
2016.0.109)

• MPICH v3.2b4-98-g4551de1 as the baseline

12

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parallel memcpy – OSU latency benchmarks

Msg Size

MPICH (Original) MPICH (Modified) [Baseline] MPICH (Modified) with OpenMP tasks

Task Size 32KB

Cell Size 32KB 256KB #threads * Task Size

Total Size 256KB 4MB 4MB

Num Cells 8 16 Total Size/Cell Size

13

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Top Pack Benchmark (from MT-MPI* paper)

• Pack the top surface (XZ plane) of a 3D matrix of doubles

• Matrix volume fixed to 1 GB and Y dimension to 2

• Represented using MPI_Type_vector

*Si et al . MT-MPI: Multithreaded MPI for many-core Environments . ICS’14

Y

X (Contiguous) Z

B1

B2
B3

14

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Results: Top Pack, MPI_Type_vector

• Packing called from a serial region in application

• 1 MPI rank

• Blk_size(X) decreases as num_blks(Z) increases

15

Threads

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Left Pack, Nested MPI_Type_vector

• Tasks at leaf level – Parallelize over Y dimension (vector datatype)

• Tasks at higher level – Parallelize over Z dimension (vector of vectors datatype)

16

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

MPI_Pack() called from a parallel region

• Uses MPI_THREAD_MULTIPLE mode

• Threads are divided into 3 groups -

 Threads calling MPI_Pack(). Create OpenMP task in MPICH

 Idle threads. Wait at the barrier and execute tasks

 Compute threads. Can help in executing tasks when reach the barrier

#pragma omp parallel

{

thread_id = omp_get_thread_num();

if (thread_id < 4)

call MPI_Pack();

else if (thread_id < 4 + num_idle_threads)

do_nothing

else

do_computation

}

17

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Results: MPI_Pack() called from a parallel region

• Total threads = 256, Packing threads = 4

• Significant benefits when threads are idle

• No penalty when no idle threads

Our approach, Tasks (Nested = false)

Our approach, Tasks (Nested = true)

Parallel for (Nested = false)

Parallel for (Nested = true)

18

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Transpose from Parallel Research Kernels*

Steps to do the transpose

1. On each rank, local transpose. No data communicated

2. All-to-all communication

1. Use nested MPI_Type_vector datatype

2. Parallelize the pack/unpack

* https://github.com/ParRes/Kernels

19

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Results : Transpose Kernel

• Matrix Order 8K doubles

• 2 MPI ranks on 1 KNL node

• Leaf vector – num_blks= 4K, blk_len=1

20

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Conclusion

• Our task-based approach-

– Opportunistic

– No creation of additional threads, so no oversubscription

– No modification made in the OpenMP library

• Speedup up to 62X on Top Pack, when all the threads are idle

• Speedup up to 6.5X in data packing and up to 1.5X reduction in overall
execution time of transpose kernel

• Code is publicly available (link in the paper)

21

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Questions ?

surabhi.jain@intel.com

https://www.linkedin.com/in/surabhi-jain-9066821a/

22

mailto:surabhi.jain@intel.com

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

23

