

ROME Workshop @ IPDPS Vancouver

Memory Footprint of Locality Information On Many-Core Platforms

Brice Goglin Inria Bordeaux – Sud-Ouest – France 2018/05/25

Locality Matters to HPC Applications

Machine (128GB total)

Package P#1
NUMANode P#1 (32GB)
L3 (15MB)
L2 (256KB)
Lld (32KB) <thld (32kb)<="" th=""> Lld (32KB) Lld (32KB</thld>
Lli (32KB)
Core P #5 Core P #0 Core P #1 Core P #2 Core P #3 Core P #4 Core P #5
PU P#10 PU P#1 PU P#3 PU P#5 PU P#7 PU P#9 PU P#11
NUMANode P#3 (32GB)
L3 (15MB)
L2 (256KB)
Lld (32KB) Lld (32
Lli (32KB)
Core P#13 Core P#8 Core P#9 Core P#10 Core P#11 Core P#12 Core P#13
PU P#22 PU P#13 PU P#15 PU P#17 PU P#19 PU P#21 PU P#23

Inría

Locality Matters for I/O too

1	L1d (32KB)
m	L1i (32KB)
	LEI (SZKB)

L1d (32KB)

L1i (32KB)

Who Needs Locality in the HPC Stack?

Memory in HPC Platforms Top500 – 2017/11

Rank	Name	Cores	Memory	GB per Core
#1	Sunway TaihuLight	10 649 600	1.31 PB	0.12
#2	Tianhe-2	3 120 000	1 PB	0.32
#3	Piz Daint	361 760	340 TB	1.06
#4	Gyoukou	19 860 000	575 TB	0.028
#5	Titan	560 640	710 TB	1.27
#6	Sequoia	1 572 864	1.5 PB	1
#7	Trinity	301 056 + 678 912	2 PB	2
#8	Cori	622 336	878 TB	1.41
#9	Oakforest-PACS	556 104	919 TB	1.65
#10	K-computer	705 024	1.4 PB	2

hwloc's Modeling of Platforms

- Tree of hierarchical resource objects (hwloc_obj structure)
 - With many attributes
 - Location with respect to CPU and memory resources (bitmaps)
 - Indexes
 - Links to parent, children, siblings, cousins
 - Type-specific attributes
 - Amount of memory, kind of cache, etc.
 - Strings for custom attributes
 - CPU model, MAC address, name, PCI vendor, etc.
- A little bit of system-wide info
 - hwloc_topology structure

hwloc Memory Footprint on KNL

- Between 400 and 500 objects
 - 256 hwthreads (PUs), 64 caches per level, 64 cores
 - Between 1 and 8 NUMA nodes
 - Some I/O objects
- About 700kB total
- Some users complain
 - They use *many* processes per node
 - They want to keep that memory available for the application
 - Even if it's about 0.1 percent of the available memory per core
 - Things will get worse in the future

Horizontal Filtering of Available Resources Only part of the platform is available to each job

Inría

Possible Ways to Manage Multiple Clients

- Native Discovery
 - Expensive, should be performed as rarely as possible (PDP'17)
- XML exchange
 - Much faster
 - Still instantiates multiple topologies in memory
- Centralizing in a server
 - Single instance
 - Requires to redirect process queries to the server
 - Slower, API change?
- Shared memory

Shared Memory, obviously but ...

- hwloc was designed in 2009
 - Many objects attributes, many ways to traverse the topology
 - We decided we didn't want so maaaaaany accessor functions to manipulate these attributes and pointers
- Many users are tied to the existing API
 - Pointers must remain valid, even if mapped in another process
 - Means all processes must map at the *same* virtual address

ROME 2018

• Or we would have to replace the entire existing API

The Virtual Address Space is mostly empty

- 128TB of VA on current x86 platforms
 - 64PB on next-generation (Intel la57 extension)
- Similar values on ARM64 and Power
- The available per-core physical memory is **MUCH** lower (GB)

- Trinity/KNL (96GB/node)
 - 99.925% of VM free if one process per node
 - 99.9988% if one process per core
- Summit/P9 (512GB/node) 99.2% and 99.981% respectively

Virtual Address Space Layout on Linux

stack	stack	stack
library 1	library 1	library 1
library 2	library 2	library 2
file mapping	file mapping	library 3
library 3	library 3	file mapping
Free Space >100TB	Free Space >100TB	Free Space >100TB
cand	idate location for shmem top	ology
heap	heap	heap
code	code	code

Implementation in Open MPI

- One ORTE daemon per node
 - Finds the largest hole in its own virtual address space
 - Doesn't know what other processes will look like
 - Allocates a shared memory region there
 - Stores the hwloc topology in it
- MPI ranks map that shared region
 - Use the hwloc topology contained there
 - If mapping failed (e.g. virtual address range not available)
 - Fall back to XML as usual

hwloc shmem topology

Experimentation Platforms

- KNL64 = 430 hwloc objects
 - Intel Xeon Phi 7230 (64 cores, 1.3GHz)
 - SNC-4, Flat
- NUMA96 = 405 hwloc objects
 - 4x Intel Xeon E7-8890v4 (24 cores each, 2.2GHz)
 - Cluster-on-Die, no Hyper-threading
- Normal24 = 97 objects
 - 2x Intel Xeon E5-2680v3 (12 cores each, 2.5GHz)
 - Cluster-on-Die, no Hyper-threading

Memory Footprint per MPI rank

ORTE hello instrumented with mallinfo

	Native Discovery	XML	Shared-Memory	No topology
KNL64	2.21MiB	2.35MiB	1.614MiB	1.613MiB
NUMA96	1.82MiB	1.94MiB	1.230MiB	1.229MiB
Normal24	1.74MiB	1.78MiB	1.535MiB	1.534MiB

Memory Saving per Node

		Saving per Node
KNL64	1 process	0
	2 processes	500kiB
	64 processes (1 per core)	31MiB
	256 processes (1 per hwthread)	127MiB
NUMA96	1 process	0
	2 processes	590kiB
	96 processes (1 per core)	56MiB
Normal24	1 process	0
	2 processes	200kiB
	24 processes (1 per core)	4.6MiB

Launch Time

	Native Discovery	XML	Shared-Memory	Speedup vs XML
KNL64 – 64 procs	9.69s	4.16s	1.68s	x 2.48
KNL64 – 256 procs	47.20s	18.45s	7.02s	x 2.63
NUMA96 – 96 procs	7.29s	1.17s	0.56s	x 2.10
Normal24 – 24 procs	0.84s	0.53s	0.47s	x 1.13

Launch Time – KNL64

Conclusion

- Many components of the HPC stack use topology information
 - And many processes per node
- Must share topology information to reduce memory footprint
 - Already needed on many-core platforms

Contribution

- hwloc may now place topology in shared-memory
- We designed a way to use the same virtual address in all processes
 - Required to maintain compatibility with old hwloc API
- Available in Open MPI 4.0 and hwloc 2.0
- Reduces footprint to a single topology per node
- Reduces launch time significantly

Future Work

- Share topology between jobs with different sets of allocated resources on same node
- Extend to other process managers
 - Slurm's srun, etc.
- Propagate shared topology information to all layers inside each process
 - Cooperation between MPI, OpenMP, etc.

Thank you for your attention

Brice.Goglin@inria.fr