
The good, the bad and the ugly: Experiences
with developing a PGAS runtime on top of
MPI-3
6th Workshop on Runtime and Operating
Systems for the Many-core Era (ROME 2018)

www.dash-project.org
Karl Fürlinger
Ludwig-Maximilians-Universität München

(Most work presented her is by Joseph
Schuchart (HLRS) and other members of the DASH team)

http://www.dash-project.org/

Vancouver, May 25, 2018 | 2ROME Workshop, IPDPS 2018

The Context - DASH

n DASH is a C++ template library that implements a PGAS
programming model

– Global data structures, e.g., dash::Array<>
– Parallel algorithms, e.g., dash::sort()
– No custom compiler needed

n Terminology Shared data:
managed by DASH in a
virtual global address
space

Private data:
managed by regular
C/C++ mechanisms

Unit: The individual participants in a DASH program,
usually full OS processes. DASH follows the SPMD model

Private

Shared

Unit 0 Unit 1 Unit N-1

int b;
int c;

dash::Array<int> a(100);

int a;
…

dash::Shared<double> s;

10 … 190 … 9 … 99

Vancouver, May 25, 2018 | 3ROME Workshop, IPDPS 2018

DASH Example Use Cases

n Data Structures

n Algorithms

struct s {...};

dash::Array<int> arr(100);
dash::NArray<s,2> matrix(100, 200);

dash::fill(arr.begin(), arr.end(), 0);
dash::sort(matrix.begin(), matrix.end());

std::fill(arr.local.begin(),
arr.local.end(),
dash::myid());

One or multi-dimensional
arrays over primitive types
or simple composite types
(“trivially copyable”)

Algorithms working in
parallel on the a global
range of elements

Access to locally stored
data, interoperability with
STL algorithms

Vancouver, May 25, 2018 | 4ROME Workshop, IPDPS 2018

Data Distribution and Local Data Access

n Data distribution can be specified using Patterns

Pattern<2>(20, 15)

(BLOCKED, NONE)

Size in first and
second dimension

Distribution in first and
second dimension

n Globalview and localview
semantics

(NONE, BLOCKCYCLIC(2))(BLOCKED, BLOCKCYCLIC(3))

Vancouver, May 25, 2018 | 5ROME Workshop, IPDPS 2018

DASH — Project Structure

DASH Runtime (DART)

DASH C++ Template Library

DASH Application

Tools and Interfaces

Hardware: Network, Processor,
Memory, Storage

One-sided Communication
Substrate

MPI GASnet GASPIARMCI

DART API

Phase I (2013-2015) Phase II (2016-2018)

LMU Munich Project management,
C++ template library

Project management,
C++ tempalte library,

DASH data dock

TU Dresden
Libraries and

interfaces, tools
support

Smart data structures,
resilience

HLRS Stuttgart DART runtime DART runtime

KIT Karlsruhe Application case
studies

IHR Stuttgart
Smart deployment,

Application case
studies

DASH is one of 16 SPPEXA projectswww.dash-project.org

http://www.dash-project.org/

Vancouver, May 25, 2018 | 6ROME Workshop, IPDPS 2018

DART

n DART is the DASH Runtime System
– Implemented in plain C
– Provides services to DASH, abstracts from a particular

communication substrate

n DART implementations
– DART-SHMEM, node-local shared memory, proof of concept
– DART-CUDA, shared memory + CUDA, proof of concept
– DART-GASPI, for evaluating GASPI

– DART-MPI: Uses MPI-3 RMA, ships with DASH

https://github.com/dash-project/dash/

https://github.com/dash-project/dash/

Vancouver, May 25, 2018 | 7ROME Workshop, IPDPS 2018

Services Provided by DART

n Memory allocation and addressing
– Global memory abstraction, global pointers

n One-sided communication operations
– Puts, gets, atomics

n Data synchronization
– Data consistency guarantees

n Process groups and collectives
– Hierarchical teams
– Regular two-sided collectives

Vancouver, May 25, 2018 | 8ROME Workshop, IPDPS 2018

Process Groups

n DASH has a concept of hierarchical teams
// get explict handle to All()
dash::Team& t0 = dash::Team::All();

// use t0 to allocate array
dash::Array<int> arr2(100, t0);

// same as the following
dash::Array<int> arr1(100);

// split team and allocate
// array over t1
auto t1 = t0.split(2)
dash::Array<int> arr3(100, t1);

DART_TEAM_ALL
{0,…,7}

Node 0 {0,…,3} Node 1 {4,…,7}

ND 0 {0,1} ND 1 {2,3} ND 0 {4,5} ND 1 {6,7}

ID=2

ID=0

ID=1

ID=2 ID=3 ID=3 ID=4

n In DART-MPI, teams map to MPI communicators
– Splitting teams is done by using the MPI group operations

Vancouver, May 25, 2018 | 9ROME Workshop, IPDPS 2018

Memory Allocation and Addressing

n DASH constructs a virtual global address space over
multiple nodes

– Global pointers
– Global references
– Global iterators

n DART global pointer
– Segment ID corresponds

to allocated MPI window

Vancouver, May 25, 2018 | 10ROME Workshop, IPDPS 2018

user

Memory Allocation Options in MPI-3 RMA

Node

MPI

user

MPI
MPI_Win_allocate()
MPI allocates the memory

MPI_Win_allocate_shared()
MPI allocates memory, accessible
by all ranks on a shared memory
node

MPI_Win_create()
User-provided memory

MPI_Win_create_dynamic()
MPI_Win_attach()
MPI_Win_detach()
Attach any number of memory
segments… …

Vancouver, May 25, 2018 | 11ROME Workshop, IPDPS 2018

Memory Allocation Options in MPI-3 RMA

n Not immediately obvious what the best option is
n In theory:

– MPI allocated memory can be more efficient (reg. memory)
– Shared memory windows area a great way to optimize node-

local accesses, DART can shortcut puts and gets and use regular
memory access instead

n In practice
– Allocation speed is also relevant for DASH
– Some MPI implementations don’t support shared memory

windows (E.g., IBM MPI on SuperMUC)
– The size of shared memory windows is severely limited on some

systems

Vancouver, May 25, 2018 | 12ROME Workshop, IPDPS 2018

Memory Allocation Latency (1)

Win_allocate / Win_create Win_dynamic

Source for all the following figures: Joseph Schuchart, Roger Kowalewski, and Karl Fürlinger. Recent Experiences in Using MPI-3
RMA in the DASH PGAS Runtime. In Proceedings of the International Conference on High Performance Computing in Asia-Pacific
Region Workshops. Tokyo, Japan, January 2018.

Very slow allocation of
memory for inter-node
(several 100 ms)!

n OpenMPI 2.0.2 on an Infiniband Cluster

Vancouver, May 25, 2018 | 13ROME Workshop, IPDPS 2018

Memory Allocation Latency (2)

Win_allocate / Win_create Win_dynamic

Allocation latency depends on the
number of involved ranks, but not
as bad as with OpenMPI

n IBM POE 1.4 on SuperMUC

Vancouver, May 25, 2018 | 14ROME Workshop, IPDPS 2018

Memory Allocation Latency (3)

Win_allocate / Win_create Win_dynamic

No influence of the allocation
size and little influence of the
number of processes.

n Cray CCE 8.5.3 on a Cray XC40 (Hazel Hen)

Vancouver, May 25, 2018 | 16ROME Workshop, IPDPS 2018

expo-
sure

epoch

access
epoch

expo-
sure

epoch

access
epoch

Data Synchronization and Consistency

n Data synchronization is based on an epoch model
– Two kinds of epochs: access epoch and exposure epoch

n Access Epoch
– Duration of time (on the

origin process) during
which it may issue RMA
operations (with regards
to a specific target process
or a group of target
processes)

n Exposure Epoch
– Duration of time (on the

target process) during
which it may be the target
of RMA operations

origin target

time time

Vancouver, May 25, 2018 | 17ROME Workshop, IPDPS 2018

Active vs. Passive Target Synchronization

n Active target means that the target actively has to issue
synchronization calls

– Fence-based synchronization
– General active-target synchronization, aka. PSCW: post-start-

complete-wait

n Passive target means that the target does not have to
actively issue synchronization calls

– “Lock” based model

Vancouver, May 25, 2018 | 18ROME Workshop, IPDPS 2018

ac
ce

ss

exposure

ac
ce

ss

exposure

ac
ce

ss

exposure

ac
ce

ss

exposure

Active-Target: Fence and PSCW

n Fence
– Simple model, but does not

fit PGAS very well

n Post/Start/Complete/Wait
– Is more general but still not a

good fit

origin/target

time

origin/target

time

int MPI_Win_fence(int assert, MPI_Win win);

MPI_Win_fence()

MPI_Win_fence()

MPI_Win_fence()

MPI_Win_fence()

MPI_Win_fence()

MPI_Win_fence()

MPI_Win_fence()

MPI_Win_fence()

Vancouver, May 25, 2018 | 19ROME Workshop, IPDPS 2018

Passive-Target

n Best fit for the PGAS model, used by DART-MPI
– One call to MPI_Win_lock_all in the beginning

(after allocation)
– One call to MPI_Win_unlock_all in the end

(before deallocation)

n Flush for additional synchronization
– MPI_Win_flush_local for local completion

– MPI_Win_flush for local and remote

completion

n Request-based operations (MPI_Rput,
MPI_Rget) (only for ensuring local completion)

access
epoch

expo-
sure

epoch

origin

time

target

time

MPI_Win_lock()

MPI_Win_unlock()

int MPI_Win_lock(int lock_type, int rank,
int assert, MPI Win win);

int MPI_Win_unlock(int rank, MPI Win win);

int MPI_Win_lock_all(int assert, MPI Win win);
int MPI_Win_unlock_all(MPI Win win);

put

flush

Vancouver, May 25, 2018 | 20ROME Workshop, IPDPS 2018

Transfer Latency: OpenMPI 2.0.2 on an Infiniband Cluster

Intra-Node Inter-Node

allocate

dynamic
dynamic

allocate

Big difference between
memory allocated with
Win_dynamic and Win_allocate

Vancouver, May 25, 2018 | 21ROME Workshop, IPDPS 2018

Transfer Latency: IBM POE 1.4 on SuperMUC

Intra-Node Inter-Node

allocate
dynamic allocate

dynamic

Only a small advantage of
Win_allocate memory,
sometimes none.

Vancouver, May 25, 2018 | 22ROME Workshop, IPDPS 2018

Transfer Latency: Cray CCE 8.5.3 on a Cray XC40 (Hazel Hen)

Intra-Node Inter-Node

allocate

dynamic allocate
dynamic

Significant advantages of
bypassing MPI using shared
memory windows.

Vancouver, May 25, 2018 | 23ROME Workshop, IPDPS 2018

Efficiency of Local Memory Access

n Baseline (malloc):
0.012s

n Intel MPI on SuperMUC:

// do some work and measure how long it takes
double do_work(int *beg, int nelem) {
const int LCG_A = 1664525, LCG_C = 1013904223;

int seed = 31337;
double start, end;

start = TIMESTAMP();
for(int i=0; i<nelem; ++i) {
seed = LCG_A * seed + LCG_C;
beg[i] = ((unsigned)seed) %100;

}
end = TIMESTAMP();

return end-start;
}

dash::Array<int> arr(...)
int *mem = (int*) malloc(sizeof(int)*nelem);

double dur1 = do_work(arr.lbegin(), nelem, 1);
double dur2 = do_work(mem, nelem, 1);

D ND

S 0.145s 0.228s

NS 0.013s 0.149s

n Workarounds have
been identified…

Vancouver, May 25, 2018 | 24ROME Workshop, IPDPS 2018

Summary

n The good:

– Availability on all HPC systems

– Job launch

– Collective operations: convenient and well-performing

– Full featured specification (put/get/accumulate/atomics);

exception: individual remote completion of puts

n The bad / ugly

– Incomplete implementations (e.g., IBM MPI not supporting

shared memory windows)

– Significant performance differences among window allocation

options between implementations – hard to find settings that

are good on all platforms

– Progress is under-specified in the specification and may need

platform-specific tuning

Vancouver, May 25, 2018 | 25ROME Workshop, IPDPS 2018

Conclusions

n For DASH, DART-MPI will likely stay the default runtime
system in the near future

n We are evaluating alternatives
– GASPI – attractive because of fault tolerance features
– GASnet
– OpenSHMEM
– …

Vancouver, May 25, 2018 | 26ROME Workshop, IPDPS 2018

Acknowledgements

n Funding

n The DASH Team
T. Fuchs (LMU), R. Kowalewski (LMU), D. Hünich (TUD), A. Knüpfer
(TUD), J. Gracia (HLRS), C. Glass (HLRS), J. Schuchart (HLRS), F.
Mößbauer (LMU), K. Fürlinger (LMU)

n DASH is on GitHub
– https://github.com/dash-project/dash/

n Webpage
– http://www.dash-project.org

https://github.com/dash-project/dash/
http://www.dash-project.org/

