
1

Diagnosing Performance Fluctuations
of High-throughput Software

for Multi-core CPUs

May 25, 2018, ROME’18@Vancouver

Soramichi Akiyama, Takahiro Hirofuchi, Ryousei Takano
National Institute of Advanced Industrial Science and Technology (AIST), Japan

{s.akiyama, t.hirofuchi, takano-ryousei}@aist.go.jp

2

Packet No

L
at

en
cy

Performance of high-throughput software

Latency of SQL queries on a DBMS (mils of queries/s)

Throughput of software networking stack (100s Gbps)

Fluctuates for similar of even identical data-
items

TPC-C: standard deviation is twice the mean (*1)

Software-based packet processing: throughput drops by
27% in the worst case (*2)

Large impact on usr experience

Performance Fluctuation

(*1) “A top-down approach to achieving performance predictability in database systems”, SIGMOD’17
(*2) “Toward predictable performance in software packet-processing platforms”, NSDI’12

*data-item := {query, packet, request}

3

Cache-warmth

The first data-item may take more time than others

Implementation design

Optimizing for the averaged may enlarge tail latency

Resource congestion

Depending on how co-located workload uses competing
resources

Causes of Performance Fluctuation

Performance fluctuations occur due to non-functional states of
high-throughput software

4

Fluctuations occur in a complex set of non-
functional states of the target software

May appear only in a production run / a compound test

Reproducing non-functional states into a control
environment is Infeasible

Cannot be quantified easily

May change frequently

Pinpointing a specific state as the root cause before
solving the problem is impossible

Difficulty of Diagnosing Fluctuation

Need to diagnose fluctuations online with low overhead

5

Profile: Averaged view for a certain time period

Trace: A list of performance event + timestamp

Trace vs. Profile

90 us

10 us

Per-data-item traces are promising to help diagnosing
performance fluctuations, but profiles are not useful

6

Software-based mechanisms to obtain traces

Instrumentation at the head and the end of a function to
record traces

Typical implementation: insert special function calls

Examples: gprof, Vampire, cProfile

Obtaining Traces: Challenge (1/2)

main

f1

inst inst

f2

inst inst

timestamp: t1
ev: f1_enter

timestamp: t2
ev: f1_leave

timestamp: t3
ev: f2_enter

timestamp: t4
ev: f2_leave

t

7

Functions in high-throughput software take a few
micro seconds only

Obtaining Traces: Challenge (2/2)

Instrumenting every function is too heavy for our scenario

- NGINX serves the
default index page
(612 bytes)
- 1K requests sent
simultaneously
- # of cycles for each
function is measured
by perf
- A lot of them take
only a couple of μs

8

Main Idea: use instrumentation only when
necessary, and use sampling in other places

Software-based instrumentation and hardware-
based sampling work complementary each other

Hybrid Approach

9

Precise Event Based Sampling (PEBS) is leveraged

Supported in almost any Intel CPUs

Enhancement of performance counters (counts hardware
events and records program state at every R occurrences)

PEBS is (almost) all hardware-based

Normal performance counters: OS records program states

PEBS: CPU (HW) records program states

Pros: low overhead (less than 250 ns / R events) (*)

Cons: can record pre-defined type of prg states

HW-based sampling: PEBS

(*) “Quantitative Evaluation of Intel PEBS Overhead for Online System-Noise Analysis”, ROSS’17

10

How PEBS works
Looks like normal performance counters, but
(almost) everything is done by hardware

3) The CPU triggers a PEBS assist
(micro-code, no interruption is invoked)

PEBS buffer
(Memory
region) PEBS

threshold

Counter registers

1) The CPU counts specified
PEBS events (e.g. cache misses)

2) A counter register overflows
after R occurrences of the events

PEBS
index

PEBS
record

PEBS
record

addr

12345678

PEBS
base

A PEBS record includes:
General purpose registers (eax, ebx, ..), Instruction Pointer (IP),
Timestamp (tsc), Data LA, Load Latency, TX abort reason flag

11

Overhead of PEBS and normal (software-assisted)
performance counters

R (Reset Value): a sample is taken every time the
specified event occurs R times

Halving R results in the sample interval to be also halved,
if there is no other bottleneck

PEBS vs. Software-based sampling

PEBS is promising for our purpose while software-assited perf
counters are not (Recap: functions to trace take a few second)

12

PEBS is low overhead, but only records pre-defined
set of data (which includes no data-item ID)

Q: How to map each PEBS sample to a specific data-item?

A: Instrumentation only when target software starts
processing a new data-item

Modern high throughput software (NGINX, MariaDB,
DPDK) process one data-item on a core at a time

Mapping PEBS Data to Data-Items

13

Insert special function calls on data-item switches:

1. The target software starts processing a new data-item

2. It finishes processing a data-item

 Self-switching software architecture

Data-item switches explicitly written in the code to optimize
for throughput → Instrument on these code points

Timer-switching software architecture (future work)

Additionally caused by timers to obey latency constraints

Instrumentation in Our Approach

while(1) {
 receive_data();
 do_something();
 more_work();
 blahblahblah();
 send_result();
}

Data-item switch

Data-item switch

14

Step 1: Data Recording

Instrument the code on data-item switches

Record timestamps and IPs using PEBS (RETIRED_UOPS)

Acquire the symbol table from the app binary

Proposed Workflow (1/2)

15

Step 2: Data Integration

Map each PEBS sample to a {data-item, function} pair

Estimate the elapsed time for {di, fi} by:

Proposed Workflow (2/2)

Timestamp of the last record for {d
i
,f

i
}

 – Timestamp of the first record for {d
i
,f

i
}

16

Sample app

Input: query {id, n} → do some work on n data points,
returns the results, and caches them

Latency fluctuates due to cache warmth

DPDK-based ACL (access control list)

Input: packet → Judge if the packet should be dropped

Latency fluctuates due to implementation design

Environment

Evaluation

17

Consists of two threads, pinned to two cores

Thread 0: receives queries and passes them to Thread 1

Thread 1: applies linear transformation to n points (Xi, Yi)
and caches the results

Instrumentation

Thread 1 switches data-items when (and only when) it
finishes a query and start a new one

Sample Application (1/2)

Latency of two identical
queries differ due to
different cache warmth

18

Fluctuations due to different cache warmth are
clearly observed

Function level information → useful to mitigate the
fluctuation (cf. Query-level logging)

Sample Application (2/2)

19

Consists of three threads, pinned to three cores

RX/TX threads: receives packets / sends filtered packets

ACL thread: filters packets according to the rules

Latency of very similar packets differ due to
implementation design (details are in the paper)

Instrument rte_acl_classify() in ACL thread

Other threads are almost idle

DPDK-based ACL (1/3)

slowest

fastest

20

Baseline (ground truth): inserting logs before and
after rte_acl_classify()

Fluctuations for different packet types are clearly
and accurately observed

DPDK-based ACL (2/3)

21

Overhead is reduced with larger reset values (==
smaller sampling rates)

But reduces accuracy by nature

A good balance is required (see the paper for more
discussion)

DPDK-based ACL (3/3)

22

Blocked Time Analysis (*1)

Instrument Spark by adding logs → record how long time a
query is blocked due to IO

Need to specify which function to insert logs

Vprofiler (*2)

Starts instrumenting form large functions and gradually
refines the profile

Need to repeat the same experiments many times

Log20 (*3)

Automatically find where to insert logs that is enough to
reproduce execution paths, but not each data-item

Related Work

(*1) K. Ousterhout et al., “Making sense of performance in data analytics frameworks”, NSDI’15
(*2) J. Huang et al., “Statistical analysis of latency through semantic profiling”, EuroSys’17
(*3) X. Zhao et al., “Log20: Fully automated optimal placement of log printing statements under specified
overhead threshold”, SOSP’17

23

Performance fluctuations is a common and
important problem

Tail latency matters a lot on user experience

Diagnosing them is challenging

Must obtain traces to observe a single occurrence online

Instrumenting every single function is too heavy

Hybrid approach

Light-weight sampling + Information-rich instrumentation

Can observe fluctuations on a real code base

Conclusions

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23

