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Performance Fluctuation

e Performance of high-throughput software

» Latency of SQL queries on a DBMS (mils of queries/s)
» Throughput of software networking stack (100s Gbps)

e Fluctuates for similar of even identical data-
items *data-item := {query, packet, request}

» TPC-C: standard deviation is twice the mean (*1)

» Software-based packet processing: throughput drops by
27% in the worst case (*2) ﬁ)

¢ Large impact on usr experience

Latency

esovece

Packet No

(*1) “A top-down approach to achieving performance predictability in database systems”, SIGMOD’17
(*2) “Toward predictable performance in software packet-processing platforms”, NSDI'12 2




Causes of Performance Fluctuation

e Cache-warmth
» The first data-item may take more time than others

¢ Implementation design
» Optimizing for the averaged may enlarge tail latency

e Resource congestion

» Depending on how co-located workload uses competing
resources

Performance fluctuations occur due to non-functional states of
high-throughput software
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Difficulty of Diagnosing Fluctuation

e Fluctuations occur in a complex set of non-
functional states of the target software

» May appear only in a production run / a compound test

e Reproducing non-functional states into a control
environment is Infeasible
» Cannot be quantified easily
» May change frequently

» Pinpointing a specific state as the root cause before
solving the problem is impossible

Need to diagnose fluctuations online with low overhead
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Trace vs. Profile

e Profile: Averaged view for a certain time period

e Trace: A list of performance event + timestamp

Trace
Request | Func- | Event Time-
Profile tion stamp (us)

Func- Total #1 A Enter 00010 } 90 us

tion Time #1 A Leave 00100
A 250 us #2 A Enter 00145 } 10 us

B 100 us #2 A Leave 00155

C 50 us
#50 C Enter 04918
#50 C Leave 04923

Per-data-item traces are promising to help diagnosing
performance fluctuations, but profiles are not useful
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Obtaining Traces: Challenge (1/2)

e Software-based mechanisms to obtain traces

» |Instrumentation at the head and the end of a function to
record traces

» Typical implementation: insert special function calls
» Examples: gprof, Vampire, cProfile

main , t
HH\ UJ HJ Hl
inst inst inst inst
ﬂ /\

ﬂ /\
timestamp: t1 | [timestamp: t2 timestamp: t3 | | timestamp: t4
ev: T1_enter | |ev: f1_leave ev: T2_enter | |ev: f2_leave
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Obtaining Traces: Challenge (2/2)

e Functions in high-throughput software take a few

micro seconds only
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Instrumenting every function is too heavy for our scenario
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Hybrid Approach

¢ Main ldea: use instrumentation only when
necessary, and use sampling in other places

e Software-based instrumentation and hardware-
based sampling work complementary each other

Sampling Instrumentation
Implemented by hardware software
Overhead low high
Timing periodic per each data-item
Adjustable yes no
What to trace pre-defined software-controlled
Traced data includes timestamp, timestamp,
mstruction pointer data-item ID
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HW-based sampling: PEBS

e Precise Event Based Sampling (PEBS) is leveraged

» Supported in almost any Intel CPUs

» Enhancement of performance counters (counts hardware
events and records program state at every R occurrences)

e PEBS is (almost) all hardware-based

» Normal performance counters: OS records program states
» PEBS: CPU (HW) records program states

e Pros: low overhead (less than 250 ns / R events) (*)

e Cons: can record pre-defined type of prg states

(*) “Quantitative Evaluation of Intel PEBS Overhead for Online System-Noise Analysis”, ROSS’17




How PEBS works

e Looks like normal performance counters, but
(almost) everything is done by hardware

3) The CPU triggers a PEBS assist
(micro-code, no interruption is invoked)

1) The CPU counts specified
PEBS events (e.g. cache misses)

Counter registers '.1234'5678 JJJ

2) A counter register overflows
after R occurrences of the eventsy

PEBS buffer PEBS PEBS
(Memory record record :
region) PEBS PEBS PEBS
base index threshold addr

>
A PEBS record includes:

General purpose registers (eax, ebx, ..), Instruction Pointer (IP),
Timestamp (tsc), Data LA, Load Latency, TX abort reason flag
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PEBS vs. Software-based sampling

e Overhead of PEBS and normal (software-assisted)
performance counters

» R (Reset Value): a sample is taken every time the
specified event occurs R times

» Halving R results in the sample interval to be also halved,
if there is no other bottleneck

100
min (a) astar (b) bzip2 (¢) gee

Bln O Ideal
OPEBS

ARRERRNARRU LN

256K 128K 64K 32K 16K 8K 256K 128K 64K 32K 16K 8K 256K 128K 64K 32K 16K 8K
Reset Value

,_.
e}

Sample Interval (us)

[u—

PEBS is promising for our purpose while software-assited perf
— counters are not (Recap: functions to trace take a few second) —



Mapping PEBS Data to Data-ltems

e PEBS is low overhead, but only records pre-defined
set of data (which includes no data-item ID)

» Q: How to map each PEBS sample to a specific data-item?

» A: Instrumentation only when target software starts
processing a new data-item

e Modern high throughput software (NGINX, MariaDB,
DPDK) process one data-item on a core at a time

Receive Firewall Forward Send

—

Data-item —

%r/\ = |
! !‘ 000

Core 0 Core 1
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Instrumentation in Our Approach

¢ |nsert special function calls on data-item switches:

» 1. The target software starts processing a new data-item
» 2. It finishes processing a data-item

e Self-switching software architecture

» Data-item switches explicitly written in the code to optimize
for throughput = Instrument on these code points

while (1) .{ <4¢—— Data-item switch
receive_data();

do_something();
more_work() ;
blahblahblah();

: send_result(); |4—— Data-item switch

e Timer-switching software architecture (future work)
» Additionally caused by timers to obey latency constraints
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Proposed Workflow (1/2)

e Step 1: Data Recording

» Instrument the code on data-item switches
» Record timestamps and IPs using PEBS (RETIRED_UOPS)
» Acquire the symbol table from the app binary

data-1tem data-1tem data-1tem
I switch switch switch
nstrgme 0 O O time
ntation \ l —
timestamp: t timestamp: t, timestamp: t,
data-item 1d: #0 data-item 1d: #1 data-item 1d: #2
Sampling -e-e-0-0-0-0-0-0—0-0—0-0-0-00-000-0-000-0-000—p (INC
Symbol Table timestamp: t. A\ timestamp: t_
f1: 0x400000 — 0x4000a0 ip: 0x400723 ip: 0x400040

2: 0x4000al — 0x400900
—— [ 13: 0x400b00 — 0x400ffe —




Proposed Workflow (2/2)

e Step 2: Data Integration

» Map each PEBS sample to a {data-item, function} pair
» Estimate the elapsed time for {d,, .} by:

Timestamp of the last record for {d,f}
— Timestamp of the first record for {d,,f}

Data-item #0 Data-item #1
t t1 t2

H_/
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Evaluation

e Sample app

» Input: query {id, n} - do some work on n data points,
returns the results, and caches them

» Latency fluctuates due to cache warmth

e DPDK-based ACL (access control list)

» Input: packet — Judge if the packet should be dropped
» Latency fluctuates due to implementation design

e Environment

CPU Core 17 6700K (Skylake Micro arch.)
Motherboard Supermicro X11SAE-F
(BN Debian GNU/Linux 8.9 (Linux kernel 4.9)
NIC 10 Gbps Intel X520-DA2 x 2
Memory 64 GB (16 GB DDR4 x 4)
SSD 512 GB (Crucial M4 CT512M4S5SD2) 16




Sample Application (1/2)

e Consists of two threads, pinned to two cores

» Thread O: receives queries and passes them to Thread 1

» Thread 1: applies linear transformation to n points (Xi, Yi)
and caches the results

e Instrumentation

» Thread 1 switches data-items when (and only when) it
finishes a query and start a new one

Thread 1

while(l) {
g = recv msg();

l Thread 0 togla.d, timestams)i | | atency of two identical
while(1) { fzm-n}:} Resulsmay | queries differ due to

q = get _input(); f3(q.n); J Decached .

send msg(q) : log(q.id, timestamp); | different cache warmth

ret = recv msg(); | send msg(result)

} }

Core () . Core 1 .
| HNOLOGY (AIST)

Query {id: #1, n: 3}
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Sample Application (2/2)

e Fluctuations due to different cache warmth are
clearly observed

¢ Function level information = useful to mitigate the
fluctuation (cf. Query-level logging)
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{#1,3) {#2,3} {#3,2} {#4, 3} {#5,5} {#6,4} {#7,5} {#8,3} {#9, 5}
Query {id, n} 18




DPDK-based ACL (1/3)

e Consists of three threads, pinned to three cores

» RX/TX threads: receives packets / sends filtered packets
» ACL thread: filters packets according to the rules

e |atency of very similar packets differ due to
Implementation design (details are in the paper)

Type Src Addr Dst Addr Src Port | Dst Port
A 192.168.10.4 || 192.168.11.5 10001 10002 slowest
B
C

192.168.10.4 ||} 192.168.22.2 10001 10002
192.168.12.4 || 192.168.22.2 10001 10002 fastest

¢ |[nstrument rte_acl_classify() in ACL thread

» Other threads are almost idle
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DPDK-based ACL (2/3)

e Baseline (ground truth): inserting logs before and
after rte_acl_classify()

e Fluctuations for different packet types are clearly
and accurately observed
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DPDK-based ACL (3/3)

e Overhead is reduced with larger reset values (==
smaller sampling rates)

» But reduces accuracy by nature

e A good balance is required (see the paper for more

discussion)
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Related Work

e Blocked Time Analysis (*1)

» Instrument Spark by adding logs = record how long time a
query is blocked due to 10

» Need to specify which function to insert logs

e Vprofiler (*2)
» Starts instrumenting form large functions and gradually
refines the profile
» Need to repeat the same experiments many times

e Log20 (*3)

» Automatically find where to insert logs that is enough to
reproduce execution paths, but not each data-item

(*1) K. Ousterhout et al., “Making sense of performance in data analytics frameworks”, NSDI'15

(*2) J. Huang et al., “Statistical analysis of latency through semantic profiling”, EuroSys’17

(*3) X. Zhao et al., “Log20: Fully automated optimal placement of log printing statements under specified -
overhead threshold”, SOSP’17



Conclusions

e Performance fluctuations is a common and
important problem

» Tail latency matters a lot on user experience

¢ Diagnhosing them is challenging
» Must obtain traces to observe a single occurrence online
» Instrumenting every single function is too heavy

e Hybrid approach

» Light-weight sampling + Information-rich instrumentation
» Can observe fluctuations on a real code base

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 23



	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23

