Diagnosing Performance Fluctuations
of High-throughput Software
for Multi-core CPUs

May 25, 2018, ROME’'18@Vancouver

Soramichi Akivama, Takahiro Hirofuchi, Ryousei Takano
National Institute of Advanced Industrial Science and Technology (AIST), Japan
{s.akiyama, t.hirofuchi, takano-ryousei}@aist.go.jp

A
P e

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 1

Performance Fluctuation

e Performance of high-throughput software

» Latency of SQL queries on a DBMS (mils of queries/s)
» Throughput of software networking stack (100s Gbps)

e Fluctuates for similar of even identical data-
items *data-item := {query, packet, request}

» TPC-C: standard deviation is twice the mean (*1)

» Software-based packet processing: throughput drops by
27% in the worst case (*2) ﬁ)

¢ Large impact on usr experience

Latency

esovece

Packet No

(*1) “A top-down approach to achieving performance predictability in database systems”, SIGMOD’17
(*2) “Toward predictable performance in software packet-processing platforms”, NSDI'12 2

Causes of Performance Fluctuation

e Cache-warmth
» The first data-item may take more time than others

¢ Implementation design
» Optimizing for the averaged may enlarge tail latency

e Resource congestion

» Depending on how co-located workload uses competing
resources

Performance fluctuations occur due to non-functional states of
high-throughput software

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 3

Difficulty of Diagnosing Fluctuation

e Fluctuations occur in a complex set of non-
functional states of the target software

» May appear only in a production run / a compound test

e Reproducing non-functional states into a control
environment is Infeasible
» Cannot be quantified easily
» May change frequently

» Pinpointing a specific state as the root cause before
solving the problem is impossible

Need to diagnose fluctuations online with low overhead

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 4

Trace vs. Profile

e Profile: Averaged view for a certain time period

e Trace: A list of performance event + timestamp

Trace
Request | Func- | Event Time-
Profile tion stamp (us)

Func- Total #1 A Enter 00010 } 90 us

tion Time #1 A Leave 00100
A 250 us #2 A Enter 00145 } 10 us

B 100 us #2 A Leave 00155

C 50 us
#50 C Enter 04918
#50 C Leave 04923

Per-data-item traces are promising to help diagnosing
performance fluctuations, but profiles are not useful

TTTTTTTTTTTTTTTTTTT ADVANCED INDUS I RIAL SCIENCE AND TECHNOLOQGY (AIST) 5

AIST CPNIRC

Obtaining Traces: Challenge (1/2)

e Software-based mechanisms to obtain traces

» |Instrumentation at the head and the end of a function to
record traces

» Typical implementation: insert special function calls
» Examples: gprof, Vampire, cProfile

main , t
HH\ UJ HJ Hl
inst inst inst inst
ﬂ /\

ﬂ /\
timestamp: t1 | [timestamp: t2 timestamp: t3 | | timestamp: t4
ev: T1_enter | |ev: f1_leave ev: T2_enter | |ev: f2_leave

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 6

Obtaining Traces: Challenge (2/2)

e Functions in high-throughput software take a few

micro seconds only

- NGINX serves the
m default index page
(612 bytes)

] - 1K requests sent
simultaneously

- # of cycles for each

UL HH TNI0Q00, ncionemeasue

Elapsed Time (us)
o = b W B h SN] SO
|
|
|
|

¢ F S F L S & & $ & F o L F G &
SEITFFEEATS \,%ﬂ¢ ST FTEFLSTFIEE - Alot of them take
TS Dd Y 00 Y ST NE S S \& s (@ Sasd g ;&
S [LS g o L AN Fe & . &
fHFLEF TEEFTE & S SFEIETEE S only a couple of ys
Y o s &0 o, & & L& RIS LN S o WL
SRS D5, & S & o MM S PR
P POR FFRe VT IS8T S8
QoG B PN K7 § TR e DA
"Q..Q\’ {\% W w {.& \’%F/ d Q,D \Q' ¥ /"l"/ P = .h/d;'- +/
4 S o D X &/ 0@-@6 >R AR
g & & > & <
& & & & & &
6@ o ht oy
nd
/ & 4

Instrumenting every function is too heavy for our scenario

INATIVIVAL NG UL Ul Ml W S i 11 VA W 1 1 LE7 e W W ihm i Ui £ Vs § bl 1N s WA 1 AW 7 /

Hybrid Approach

¢ Main ldea: use instrumentation only when
necessary, and use sampling in other places

e Software-based instrumentation and hardware-
based sampling work complementary each other

Sampling Instrumentation
Implemented by hardware software
Overhead low high
Timing periodic per each data-item
Adjustable yes no
What to trace pre-defined software-controlled
Traced data includes timestamp, timestamp,
mstruction pointer data-item ID

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 8

HW-based sampling: PEBS

e Precise Event Based Sampling (PEBS) is leveraged

» Supported in almost any Intel CPUs

» Enhancement of performance counters (counts hardware
events and records program state at every R occurrences)

e PEBS is (almost) all hardware-based

» Normal performance counters: OS records program states
» PEBS: CPU (HW) records program states

e Pros: low overhead (less than 250 ns / R events) (*)

e Cons: can record pre-defined type of prg states

(*) “Quantitative Evaluation of Intel PEBS Overhead for Online System-Noise Analysis”, ROSS’17

How PEBS works

e Looks like normal performance counters, but
(almost) everything is done by hardware

3) The CPU triggers a PEBS assist
(micro-code, no interruption is invoked)

1) The CPU counts specified
PEBS events (e.g. cache misses)

Counter registers '.1234'5678 JJJ

2) A counter register overflows
after R occurrences of the eventsy

PEBS buffer PEBS PEBS
(Memory record record :
region) PEBS PEBS PEBS
base index threshold addr

>
A PEBS record includes:

General purpose registers (eax, ebx, ..), Instruction Pointer (IP),
Timestamp (tsc), Data LA, Load Latency, TX abort reason flag

nationaL INsTiTuTE of ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 10

AIST CPNIRC

PEBS vs. Software-based sampling

e Overhead of PEBS and normal (software-assisted)
performance counters

» R (Reset Value): a sample is taken every time the
specified event occurs R times

» Halving R results in the sample interval to be also halved,
if there is no other bottleneck

100
min (a) astar (b) bzip2 (¢) gee

Bln O Ideal
OPEBS

ARRERRNARRU LN

256K 128K 64K 32K 16K 8K 256K 128K 64K 32K 16K 8K 256K 128K 64K 32K 16K 8K
Reset Value

,_.
e}

Sample Interval (us)

[u—

PEBS is promising for our purpose while software-assited perf
— counters are not (Recap: functions to trace take a few second) —

Mapping PEBS Data to Data-ltems

e PEBS is low overhead, but only records pre-defined
set of data (which includes no data-item ID)

» Q: How to map each PEBS sample to a specific data-item?

» A: Instrumentation only when target software starts
processing a new data-item

e Modern high throughput software (NGINX, MariaDB,
DPDK) process one data-item on a core at a time

Receive Firewall Forward Send

—

Data-item —

%r/\ = |
! !‘ 000

Core 0 Core 1

12

AIST CPNIRC

Instrumentation in Our Approach

¢ |nsert special function calls on data-item switches:

» 1. The target software starts processing a new data-item
» 2. It finishes processing a data-item

e Self-switching software architecture

» Data-item switches explicitly written in the code to optimize
for throughput = Instrument on these code points

while (1) .{ <4¢—— Data-item switch
receive_data();

do_something();
more_work() ;
blahblahblah();

: send_result(); |4—— Data-item switch

e Timer-switching software architecture (future work)
» Additionally caused by timers to obey latency constraints

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 13

Proposed Workflow (1/2)

e Step 1: Data Recording

» Instrument the code on data-item switches
» Record timestamps and IPs using PEBS (RETIRED_UOPS)
» Acquire the symbol table from the app binary

data-1tem data-1tem data-1tem
I switch switch switch
nstrgme 0 O O time
ntation \ l —
timestamp: t timestamp: t, timestamp: t,
data-item 1d: #0 data-item 1d: #1 data-item 1d: #2
Sampling -e-e-0-0-0-0-0-0—0-0—0-0-0-00-000-0-000-0-000—p (INC
Symbol Table timestamp: t. A\ timestamp: t_
f1: 0x400000 — 0x4000a0 ip: 0x400723 ip: 0x400040

2: 0x4000al — 0x400900
—— [13: 0x400b00 — 0x400ffe —

Proposed Workflow (2/2)

e Step 2: Data Integration

» Map each PEBS sample to a {data-item, function} pair
» Estimate the elapsed time for {d,, .} by:

Timestamp of the last record for {d,f}
— Timestamp of the first record for {d,,f}

Data-item #0 Data-item #1
t t1 t2

H_/

15

Evaluation

e Sample app

» Input: query {id, n} - do some work on n data points,
returns the results, and caches them

» Latency fluctuates due to cache warmth

e DPDK-based ACL (access control list)

» Input: packet — Judge if the packet should be dropped
» Latency fluctuates due to implementation design

e Environment

CPU Core 17 6700K (Skylake Micro arch.)
Motherboard Supermicro X11SAE-F
(BN Debian GNU/Linux 8.9 (Linux kernel 4.9)
NIC 10 Gbps Intel X520-DA2 x 2
Memory 64 GB (16 GB DDR4 x 4)
SSD 512 GB (Crucial M4 CT512M4S5SD2) 16

Sample Application (1/2)

e Consists of two threads, pinned to two cores

» Thread O: receives queries and passes them to Thread 1

» Thread 1: applies linear transformation to n points (Xi, Yi)
and caches the results

e Instrumentation

» Thread 1 switches data-items when (and only when) it
finishes a query and start a new one

Thread 1

while(l) {
g = recv msg();

l Thread 0 togla.d, timestams)i | | atency of two identical
while(1) { fzm-n}:} Resulsmay | queries differ due to

q = get _input(); f3(q.n); J Decached .

send msg(q) : log(q.id, timestamp); | different cache warmth

ret = recv msg(); | send msg(result)

} }

Core () . Core 1 .
| HNOLOGY (AIST)

Query {id: #1, n: 3}

17

Sample Application (2/2)

e Fluctuations due to different cache warmth are
clearly observed

¢ Function level information = useful to mitigate the
fluctuation (cf. Query-level logging)

90 ~fluctuation

0 ™ fluctuation E B @ f2 fl
’%“ 70
= 60 13
E 50
- <
T %0 7
E‘ 20 Z & é\/ Y 7
= 10 \Qg 2 \ §§€ 4 77 4
0 }ﬂ \//\ \< /é \ \\ \\ N < \

{#1,3) {#2,3} {#3,2} {#4, 3} {#5,5} {#6,4} {#7,5} {#8,3} {#9, 5}
Query {id, n} 18

DPDK-based ACL (1/3)

e Consists of three threads, pinned to three cores

» RX/TX threads: receives packets / sends filtered packets
» ACL thread: filters packets according to the rules

e |atency of very similar packets differ due to
Implementation design (details are in the paper)

Type Src Addr Dst Addr Src Port | Dst Port
A 192.168.10.4 || 192.168.11.5 10001 10002 slowest
B
C

192.168.10.4 ||} 192.168.22.2 10001 10002
192.168.12.4 || 192.168.22.2 10001 10002 fastest

¢ |[nstrument rte_acl_classify() in ACL thread

» Other threads are almost idle

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 19

DPDK-based ACL (2/3)

e Baseline (ground truth): inserting logs before and
after rte_acl_classify()

e Fluctuations for different packet types are clearly
and accurately observed

18

2 16 Type A Type B Type C

g gy

= 10 "

2 8

g 6

=

D 2

b= T YR T

E O MM MMM L MMM MY LM MY

% 2 d 283z 233z 2
L ':U]

= Z Z Z
L = =}

Reset Value 20

DPDK-based ACL (3/3)

e Overhead is reduced with larger reset values (==
smaller sampling rates)

» But reduces accuracy by nature

e A good balance is required (see the paper for more

discussion)
5.0
—~ 45 Type A Type B Type C
2 40
E 3.5
= 30 —
= 25 aa —
- 2.0 - == —
T 15
& 1.0
2 05
= 0.0 S .
— MOM M M M M M M M M M M M MM
o0] WO — =I >0 | O] = w_a]] O - =T
D — cl el — —_ (o] ol — — ™ -l

Reset Value

21

Related Work

e Blocked Time Analysis (*1)

» Instrument Spark by adding logs = record how long time a
query is blocked due to 10

» Need to specify which function to insert logs

e Vprofiler (*2)
» Starts instrumenting form large functions and gradually
refines the profile
» Need to repeat the same experiments many times

e Log20 (*3)

» Automatically find where to insert logs that is enough to
reproduce execution paths, but not each data-item

(*1) K. Ousterhout et al., “Making sense of performance in data analytics frameworks”, NSDI'15

(*2) J. Huang et al., “Statistical analysis of latency through semantic profiling”, EuroSys’17

(*3) X. Zhao et al., “Log20: Fully automated optimal placement of log printing statements under specified -
overhead threshold”, SOSP’17

Conclusions

e Performance fluctuations is a common and
important problem

» Tail latency matters a lot on user experience

¢ Diagnhosing them is challenging
» Must obtain traces to observe a single occurrence online
» Instrumenting every single function is too heavy

e Hybrid approach

» Light-weight sampling + Information-rich instrumentation
» Can observe fluctuations on a real code base

TTTTTTTTTTTTTTTTTTT ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 23

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23

