
Diverse Workloads need Specialized System
Software: An approach of Multi-kernels and
Application Containers

Balazs Gerofi
bgerofi@riken.jp

Exa-scale System Software Research Group
RIKEN Advanced Institute for Computational Science, JAPAN

2017/Aug/28 -- ROME’17 Santiago De Compostela, Spain

What is RIKEN?

2

§ RIKEN is Japan's largest (government funded) research institution
§ Established in 1917
§ Research centers and institutes across Japan

Advanced Institute	for	
Computational	Science	(AICS)

K	Computer

Towards the Next Generation Flagship Japanese Supercomputer
(without Tsubame series)

3

1

10

100

1000
Post	K	Computer

U.	of	Tsukuba
U.	of	Tokyo

Oakforest
PACS

T2K

PF

2008 2010 2012 2014 2016 2018 2020

T2K	stands	for	
U.	of	Tsukuba
U.	of	Tokyo	&
Kyoto	U.

RIKEN

9	Universities
and	National	
Laboratories

• Oakforest PACS	(OFP)	is	operated	by	Univ.	of	
Tsukuba	and	Univ.	of	Tokyo

• KNL	+	OmniPath (~25PF,	8100	nodes)
• Machine	resources	are	partly	used	for	

developing	the	system	software	stack	
for	Post	K

4

Agenda

§ Motivation
§ Lightweight Multi-kernels

§ IHK/McKernel

§ Linux container concepts
§ conexec: integration with multi-kernels
§ Results
§ Conclusion

5

Motivation – system software/OS challenges for high-end
HPC (and for converged HPC/BD/ML stack?)

§ Node architecture: increasing complexity and heterogeneity
§ Large number of (heterogeneous) CPU cores, deep memory hierarchy, complex

cache/NUMA topology, specialized PUs
§ Applications: increasing diversity

§ Traditional/regular HPC + in-situ data analytics + Big Data processing + Machine
Learning + Workflows, etc.

§ What do we need from the system software/OS (HPC perspective)?
§ Performance and scalability for large scale parallel apps
§ Support for Linux APIs – tools, productivity, monitoring, etc.
§ Full control over HW resources
§ Ability to adapt to HW changes

§ Emerging memory technologies, power constrains, specialized PUs
§ Performance isolation and dynamic reconfiguration

§ According to workload characteristics, support for co-location

6

Approach: embrace diversity and complexity

§ Enable dynamic specialization of the system software stack to meet
application requirements
§ User-space: Full provision of libraries/dependencies for all applications will

likely not be feasible:
§ Containers (i.e., namespaces) – specialized user-space stack

§ Kernel-space: Single monolithic OS kernel that fits all workloads will likely not
be feasible:
§ Specialized kernels that suit the specific workload

§ Lightweight multi-kernels for HPC

Lightweight Multi-Kernels

7

§ Traditionally: driven by the need for scalable, consistent performance for bulk-
synchronous HPC

8

Background – HPC Node OS Architecture

• Start	from	Linux	and	remove	features	impeding	
HPC	performance

• Eliminate	OS	noise	(daemons,	timer	IRQ,	etc..),	
simplify	memory	mngt.,	simplify	scheduler

“Stripped	
down
Linux”	

approach
(Cray’s	Extr.	Scale	Linux,	

Fujitsu’s	Linux,	
ZeptoOS,	etc..)

HPC	OS

Simple	Mem.	
Mngt.

Linux	like	API

Network
Driver

Simple	
Scheduler

General	
scheduler

Complex	Mem.	
Mngt.

Linux

TCP	stack

Dev.	Drivers

Full	Linux	API

VFS

File	Sys	Driers

Often	breaks	the	
Linux	API	and	

introduces	hard	to	
maintain	

modifications/patche
s	to	the	Linux	kernel!

9

§ Traditionally: driven by the need for scalable, consistent performance for bulk-
synchronous HPC

• Start	from	a	thin	Lightweight	Kernel	(LWK)	written	from	
scratch	and	add	features	to	provide	a	more	Linux	like			
I/F,	but	keep	scalability

• Support	dynamic	libraries,	allow	thread	over-
subscription,	support	for	/proc filesystem,	etc..

“Enhanced	
LWK”

approach
(Catamount,	CNK,	

Kitten,	etc..)

Background – HPC Node OS Architecture

HPC	OS

Simple	Mem.	
Mngt.

Linux	like	API

Network
Driver

Simple	
Scheduler

No	full	Linux	
API,	lack	of	

device	drivers	
and	support	for	

tools!	

Very	simple
mem mngt.

Thin	LWK

Co-operative	
scheduler

Limited	API

10

High Level Approach: Linux + Lightweight Kernel

Thin	LWK

Limited	API

Linux

Full	Linux	API

Memory

CPU CPUCPU CPU… …
Interrupt

System
daemon

§ With the abundance of CPU cores comes the hybrid approach: run Linux and LWK side-by-side
in compute nodes!

§ Partition resources (CPU core, memory) explicitly
§ Run HPC apps on LWK
§ Selectively serve OS features with the help of Linux by offloading requests

?

O
S

jit
te

r
co

nt
ai

ne
d

in
 L

in
ux

, L
W

K
is

 is
ol

at
ed

HPC	Application

PartitionPartition

In-situ	workloads

How	to	design	such	system?
Where	to	split	OS	functionalities?
How	do	multiple	kernels	interplay?

Hybrid/Specialized (co)-Kernels The idea of combining FWK+LWK was first
proposed by FusedOS @ IBM!

Argo (nodeOS), led by Argonne National Laboratory mOS @ Intel Corporation

Vendor	Linux	
(e.g.,	Cray	Linux)	

Compute	Node	Hardware	

AD
IO
S	

			
		X
EM

EM
	

Hobbes	
Run*me	

Applica*on	

Opera*ng	
System	

KiCen	Co-Kernel	

TC
AS

M
	

TC
AS

M
	

AD
IO
S	

			
		X
EM

EM
	

SimulaGon	B	

Leviathan Node Manager

Pisces	

	
	
	
	
	
	
	
	

KiCen	Co-Kernel	

TC
AS

M
	

AD
IO
S	

			
XE

M
EM

	

Analysis	Tool	

Palacios	VMM	
Full	Linux	VM	

SimulaGon	A	

Hobbes, led by Sandia National LaboratoriesFFMK, led by TU Dresden

Property/Project Unmodified Linux	
Kernel

Device	Driver	
Transparency	in	LWK

Kernel Level	
Workload	Isolation

Full	POSIX	Support
on	LWK

Development	Effort

Argo No Yes No Yes Ideally	small

mOS No Yes Yes/No? Yes Ideally small

Hobbes	(a.k.a.,
Pisces+Kitten)

Yes No Yes No Significant

FFMK	(L4+Linux) No No Yes No Significant

IHK/McKernel Yes Yes Yes Yes Significant

12

IHK/McKernel Architectural Overview

Memory

IHK	Linux

Delegator
module

CPU CPUCPU CPU… …
McKernel

Linux

System
daemon

Kernel
daemon

Proxy	process

IHK	Co-kernel

HPC	Application

Interrupt

System
call

System
call

Partition Partition

O
S

jit
te

r
co

nt
ai

ne
d

in
 L

in
ux

, L
W

K
is

 is
ol

at
ed

§ Interface for Heterogeneous Kernels (IHK):
§ Allows dynamic partitioning of node resources (i.e., CPU cores, physical memory, etc.)
§ Enables management of multi-kernels (assign resources, load, boot, destroy, etc..)
§ Provides inter-kernel communication (IKC), messaging and notification

§ McKernel:
§ A lightweight kernel developed from scratch, boots from IHK

§ Designed for HPC, noiseless, simple, implements only performance sensitive system calls (roughly process and
memory management) and the rest are offloaded to Linux

No	Linux	modifications!
Dynamic	reconfiguration.

No	reboot	of	the	host	Linux	required!

McKernel and System Calls

Implemented Planned

Process
Thread

arch_prctl,	clone,	execve,	exit,	exit_group,	fork,	
futex,	getpid,	getrlimit,	kill,	pause,	ptrace,	

rt_sigaction,	rt_sigpending,	rt_sigprocmask,	
rt_sigqueueinfo,	rt_sigreturn,	rt_sigsuspend,	

set_tid_address,	setpgid,	sigaltstack,	tgkill,	vfork,	
wait4,	signalfd,	signalfd4, ptrace

get_thread_area,	getrlimit,		
rt_sigtimedwait,	set_thread_area,	

setrlimit

Memory	
management

brk,	gettid,	madvise,	mlock,	mmap,	mprotect,	
mremap,	munlock,	munmap,	remap_file_pages,	

shmat,	shmctl,	shmdt,	shmget, mbind,	
set_mempolicy,	get_mempolicy

get_robust_list,	mincore,	mlockall,	
modify_ldt,	munlockall,	

set_robust_list

Scheduling sched_getaffinity,	sched_setaffinity,	getitimer,	
gettimeofday,	nanosleep,	sched_yield,	

settimeofday

setitimer,	time,	times	

Performance	
Counter

Direct	PMC	interface:	pmc_init,	pmc_start,	
pmc_stop,	pmc_reset,	PAPI	Interface

• McKernel is	a	lightweight	(co-)kernel	designed	for	HPC
• Linux	ABI	compatible
• Boots	from	IHK	(no	intention	to	boot	it	stand-alone)
• Noiseless,	simple,	with	a	minimal	set	of	features	implemented	and	the	rest	offloaded	to	Linux

• System	calls	not	listed	above	are	offloaded to	Linux
• POSIX	compliance:	almost	the	entire	LTP	test	suite	passes!	(2013	version:	100%,	2015:	99%)

13

14

Memory

IHK	Linux

Delegator
module

CPU CPUCPU CPU… …
McKernel

Linux

System
daemon

Kernel
daemon

Proxy	process

IHK Co-kernel

HPC	Application

Interrupt

System
call

System
call

Partition Partition

O
S

jit
te

r c
on

ta
in

ed
 in

 L
in

ux
, L

W
K

is
iso

la
te

d
§ For each application process a “proxy-process” resides on Linux
§ Proxy process:

§ Provides execution context on behalf of the application so that offloaded calls can be directly
invoked in Linux

§ Enables Linux to maintain certain state information that would have to be otherwise kept track of in
the LWK
§ (e.g., file descriptor table is maintained by Linux)

Proxy Process and System Call Offloading in IHK/McKernel

①Application	
makes	a	system	call

②McKernel sends	
IKC	message	to	

Linux

③
Delegator	
wakes	up	
proxy	
process

④
Proxy	
makes	

syscall in	
Linux

⑤ Linux
execute

s
syscall
and	

returns

⑥ Proxy	request	
delegator	to	
forward	result

⑦ IKC	from	Linux	to	
McKernel

⑧McKernel
returns	to	
userspace

Unified Address Space on x86

15

§ Issue: how to handle memory addresses in system call arguments?
§ Consider the target buffer of a read() system call

§ There is a need for the proxy process to access the application’s memory (running on McKernel)
§ Unified address space ensures proxy process can transparently see applications memory contents and reflect

virtual memory operations (e.g., mmap(), munmap(), etc..)

Physical	
Memory

Kernel	space	
(Linux)

Kernel	space
(McKernel)

App	text

App	data/BSS

App	heap

App	stack

proxy	process	heap

proxy	process	stack

proxy	process	data/BSS

proxy	process	text

proxy	process’
virtual	range	excluded	from	

McKernel’s user-space

Proxy	process	
unified	address-
space	mapping
(initially	empty)

0xFFFFFFFF80000000

0x00

Virtual	address	space	(Linux) Virtual	address	space	(McKernel)

Faulted	page

Proxy	process	
is	position	

independent	and	
mapped	right	

below	kernel	space

Virtual	
range	not		
available	

in	
McKernel

Implemented	as	a	
pseudo	file	
mapping.

Page	fault	handler	
consults	LWK’s	PTE	
to	map	to	the	same	
physical	address

Address	space	operations	(e.g.,	munmap(),
mprotect())	need	to	be	synchronized!

16

Preliminary Evaluation
§ Oakforest PACS

§ 8k Intel KNL nodes
§ Intel OmniPath interconnect
§ ~25 PF (6th on 2016 Nov Top500 list)

§ Intel Xeon Phi CPU 7250 model:
§ 68 CPU cores @ 1.40GHz
§ 4 HW thread / core

§ 272 logical OS CPUs altogether

§ 64 CPU cores used for McKernel, 4 for Linux
§ 16 GB MCDRAM high-bandwidth memory
§ 96 GB DRAM
§ SNC-4 flat mode:

§ 8 NUMA nodes (4 DRAM and 4 MCDRAM)

§ Linux 3.10 XPPSL
§ nohz_full on all application CPU cores

§ Acknowledgements for machine access:
§ Taisuke Boku @ The University of Tsukuba
§ Kengo Nakajima @ The University of Tokyo

17

GeoFEM (University of Tokyo)
§ Stencil code – weak scaling
§ Up to 18% improvement

0

2

4

6

8

10

12

14

16

1024 2048 4096 8192 16k 32k 64k 128k

Fi
gu

re
	o
f	m

er
it	
(s
ol
ve
d	
pr
ob

le
m
	si
ze

no
rm

al
ize

d	
to
	e
xe
cu
tio

n	
tim

e)

Number	of	cores

Linux IHK/McKernel

18

CCS-QCD (Hiroshima University)
§ Lattice quantum chromodynamics code – weak scaling
§ Up to 38% improvement

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1024 2048 4096 8192 16k 32k 64k 128k

M
Fl
op

/s
ec
/n
od

e

Number	of	cores

Linux IHK/McKernel

19

AMG2013 (CORAL benchmark suite)
§ Parallel algebraic multigrid solver – weak scaling
§ Up to 12% improvement and growing J

0

2E+10

4E+10

6E+10

8E+10

1E+11

1,2E+11

2048 4096 8192 16k 32k 64k 128k

Sy
st
em

	S
ize

	*
	It
er
at
io
ns
	/
	

So
lv
e	
Ph

as
e	
Ti
m
e

Number	of	cores

Linux IHK/McKernel

20

miniFE (CORAL benchmark suite)
§ Conjugate gradient - strong scaling
§ Up to 3.5X improvement (Linux falls over..)

0

2000000

4000000

6000000

8000000

10000000

12000000

1024 2048 4096 8192 16k 32k 64k

To
ta
l	C
G	
M
Fl
op

s

Number	of	cores

Linux IHK/McKernel 3.5X

21

lammps (CORAL benchmark suite)
§ Not all benchmarks benefit
§ Up to 24% slowdown L

0
20
40
60
80

100
120
140
160
180
200

1024 2048 4096 8192 16k 32k 64k

FO
M

Number	of	cores

Linux IHK/McKernel

§ Heavy use of writev() syscalls of OmniPath network driver which get offloaded to Linux
§ According to Intel, next generation OP will fix this problem

22

Single node: McKernel outperforms Linux across the board
→ multi-node Lammps suffers from network offloading..

75%
80%
85%
90%
95%

100%
105%
110%
115%
120%
125%

Re
la
tiv

e	
pe

rf
or
m
an

ce

Linux

McKernel

• lammps,	HACC,	QBOX	 ~4%	better,	as	opposed	to	being	slower	than	Linux	on	8	nodes	
• OmniPath offload	overhead??

Linux Container Concepts

23

24

Are containers the new narrow waist?

§ BDEC community’s view of how the future of the system software stack
may look like

§ Based on: the hourglass model
§ The narrow waist “used to be” the POSIX API

[1]	Silvery	Fu,	Jiangchuan Liu,	Xiaowen Chu,	and	Yueming Hu.	Toward	a	standard	interface	for	cloud	
providers:	The	container	as	the	narrow	waist. IEEE	Internet	Computing,	20(2):66–71,	2016.

Linux Namespaces
§ A namespace is a “scoped” view of kernel resources

§ mnt (mount points, filesystems)
§ pid (processes)
§ net (network stack)
§ ipc (System V IPC, shared mems, message queues)
§ uts (hostname)
§ user (UIDs)

§ Namespaces can be created in two ways:
§ During process creation

§ clone() syscall
§ By “unsharing” the current namespace

§ unshare() syscall

25

Linux Namespaces

§ The kernel identifies namespaces by special symbolic links (every process
belongs to exactly one namespace for each namespace type)
§ /proc/PID/ns/*
§ The content of the link is a string: namespace_type:[inode_nr]

§ A namespace remains alive until:
§ There are any processes in it, or
§ There are any references to the NS file representing it

bgerofi@vm:~/containers/namespaces# ls -ls /proc/self/ns
total 0
0 lrwxrwxrwx 1 bgerofi bgerofi 0 May 27 17:52 ipc -> ipc:[4026531839]
0 lrwxrwxrwx 1 bgerofi bgerofi 0 May 27 17:52 mnt -> mnt:[4026532128]
0 lrwxrwxrwx 1 bgerofi bgerofi 0 May 27 17:52 net -> net:[4026531957]
0 lrwxrwxrwx 1 bgerofi bgerofi 0 May 27 17:52 pid -> pid:[4026531836]
0 lrwxrwxrwx 1 bgerofi bgerofi 0 May 27 17:52 user -> user:[4026531837]
0 lrwxrwxrwx 1 bgerofi bgerofi 0 May 27 17:52 uts -> uts:[4026531838]

26

Mount Namespace

§ Provides a new scope of the mounted filesystems
§ Note:
§ Does not remount the /proc and accessing /proc/mounts won’t reflect the

current state unless remounted
§ mount proc –t proc /proc –o remount

§ /etc/mtab is only updated by the command line tool “mount” and not by the
mount() system call

§ It has nothing to do with chroot() or pivot_root()

§ There are various options on how mount points under a given namespace
propagate to other namespaces
§ Private
§ Shared
§ Slave
§ Unbindable

27

PID Namespace

§ Provides a new PID space with the first
process assigned PID 1

§ Note:
§ “ps x” won’t show the correct results

unless /proc is remounted
§ Usually combined with mount NS

bgerofi@vm:~/containers/namespaces$ sudo ./mount+pid_ns /bin/bash
bgerofi@vm:~/containers/namespaces# ls -ls /proc/self
0 lrwxrwxrwx 1 bgerofi bgerofi 0 May 27 2016 /proc/self -> 3186
bgerofi@vm:~/containers/namespaces# umount /proc; mount proc -t proc /proc/
bgerofi@vm:~/containers/namespaces# ls -ls /proc/self
0 lrwxrwxrwx 1 bgerofi bgerofi 0 May 27 18:39 /proc/self -> 56
bgerofi@vm:~/containers/namespaces# ps x
PID TTY STAT TIME COMMAND
1 pts/0 S 0:00 /bin/bash
57 pts/0 R+ 0:00 ps x

28

cgroups (Control groups)
§ The cgroup (control groups) subsystem does:
§ Resource management

§ It handles resources such as memory, cpu, network, and more
§ Resource accounting/tracking
§ Provides a generic process-grouping framework

§ Groups processes together
§ Organized in trees, applying limits to groups

§ Development was started at Google in 2006
§ Under the name "process containers”

§ v1 was merged into mainline Linux kernel 2.6.24 (2008)
§ cgroup v2 was merged into kernel 4.6.0 (2016)

§ cgroups I/F is implemented as a filesystem (cgroupfs)
§ e.g.: mount -t cgroup -o cpuset none /sys/fs/cgroup/cpuset

§ Configuration is done via cgroup controllers (files)
§ 12 cgroup v1 controllers and 3 cgroup v2 controllers

29

Some cgroup v1 controllers

§ bla

Controller/subsystem Kernel	object	name Description

blkio io_cgrp_subsys sets	limits	on	input/output	access	to	and	from	block	devices	such	
as	physical	drives	(disk,	solid	state,	USB,	etc.)

cpuacct cpuacct_cgrp_subsys generates	automatic	reports	on	CPU	resources	used	by	tasks	in	a	
cgroup

cpu cpu_cgrp_subsys sets	limits	on	the	available	CPU	time

cpuset cpuset_cgrp_subsys assigns	individual	CPUs	(on	a	multicore	system)	and	memory	nodes	
to	tasks	in	a	cgroup

devices devices_cgrp_subsys allows	or	denies	access	to	devices	by	tasks	in	a	cgroup

freezer freezer_cgrp_subsys suspends	or	resumes	tasks	in	a	cgroup

hugetlb hugetlb_cgrp_subsys controls	access	to	hugeTLBfs

memory memory_cgrp_subsys sets	limits	on	memory	use	by	tasks	in	a	cgroup and	generates	
automatic	reports	on	memory	resources	used	by	those	tasks

30

Docker Architecture

§ Docker client talks to daemon (http)
§ Docker daemon prepares root file system and

creates config.json descriptor file
§ Calls runc with the config.json
§ runc does the following steps:

§ Clones a new process creating new namespaces
§ Sets up cgroups and adds the new process

§ New process:
§ Re-mounts pseudo file systems
§ pivot_root() into root file system
§ execve() container entry point

31

Singularity Container

§ Very simple HPC oriented container
§ Uses primarily the mount namespace and chroot
§ Other namespaces are optionally supported

§ No privileged daemon, but sexec is setuid root

§ http://singularity.lbl.gov/

§ Advantage:
§ Very simple package creation

§ v1: Follows dynamic libraries and automatically packages them
§ v2: Uses bootstrap files and pulls OS distributions

§ No longer does dynamic libraries automatically

§ Example: mini applications:
§ 59M May 20 09:04 /home/bgerofi/containers/singularity/miniapps.sapp

§ Uses Intel’s OpenMP and MPI from the OpenHPC repository
§ Installing all packages needed for the miniapps requires 7GB disk space

32

Shifter Container Management

§ NERSC’s approach to HPC with Docker
§ https://bitbucket.org/berkeleylab/shifter/

§ Infrastructure for using and distributing Docker images in HPC
environments

§ Converts Docker images to UDIs (user defined images)
§ Doesn’t run actual Docker container directly

§ Eliminates the Docker daemon
§ Relies only on mount namespace and chroot
§ Same as Singularity

33

Comparison of container technologies

Project/
Attribute

Docker rkt Singularity Shifter

Supports/uses	
namespaces

yes yes mainly mount	
(others optionally)

only mount

Supports	cgroups yes yes no no

Image	format OCI appc sapp (in-house) UDI	(in-house)

Industry	standard
image

yes yes yes/no?	
(convertible)

no

Daemon	process	
required

yes no no no

Network	isolation yes yes no no

Direct	device	
access

yes yes yes yes

Root FS	 pivot_root() chroot() chroot() chroot()

Implementation
language

Go Go C,	python,	sh C, sh

34

Integration of containers and lightweight
multi-kernels

35

IHK/McKernel with Containers -- Architecture

§ Proxy runs in Linux container’s namespace(s)
§ Some modifications were necessary to IHK to properly handle namespace

scoping inside the Linux kernel
§ IHK device files need to be exposed in the container
§ Bind mounting /dev/mcdX and /dev/mcosX

§ McKernel specific tools (e.g., mcexec) also need to be accessible in the
container
§ Similar to IB driver, GPU driver issues (more on this later)

36

	
	
	
	
	

	
	
	
	
	

Applica'on	Container	
	
	

Memory	

	
	
	
	
	
	

IHK	Linux	

Delegator	
	module	

CPU	 CPU	CPU	 CPU	
…	 …	

McKernel	
Linux	

	
	

System	
daemon	

Kernel	
daemon	

Proxy	process	

IHK	Co-kernel	

HPC	ApplicaAon	

Interrupt	

System	
call	

System	
call	

ParAAon	 ParAAon	�
�
��

�
��
��

�
�
�	

�
�
��

�
��

�
�
�	
��
�
�
�

��

�
�
�	
��
��

conexec/conenter: a tool based on setns() syscall

§ Container format agnostic
§ Naturally works with mpirun
§ User needs no privileged operations (almost)

§ McKernel booting currently requires insmod

Boot LWK

Spawn container
in	background

and	obtain	NS	info

docker /
singularity	/
rkt (not	yet)Spawn	app	into	

container namespace
using	conenter

• set	up	namespaces
• cgroups
• expose LWK	information

• enter	NS
• drop	priviledges
• set	RLIMITs	
• fork	and	exec	app	(over	LWK)

McKernel /
mOS

Tear	down	
container

Shut	down
LWK

37

conexec/conenter: a tool based on setns() syscall
§ conexec (options) [container] [command] (arguments)

§ options:
§ --lwk: LWK type (mckernel|mos)
§ --lwk-cores: LWK CPU list
§ --lwk-mem: LWK memory (e.g.: 2G@0,2G@1)
§ --lwk-syscall-cores: System call CPUs

§ container: protocol://container_id
§ e.g.:

§ docker://ubuntu:tag
§ singularity:///path/to/file.img

§ Running with MPI:
§ mpirun -genv I_MPI_FABRICS=dapl -f hostfile -n 16 -ppn 1

/home/bgerofi/Code/conexec/conexec --lwk mckernel --lwk-cores 10-19 --
lwk-mem 2G@0
singularity:///home/bgerofi/containers/singularity2/miniapps.img
/opt/IMB_4.1/IMB-MPI1 Allreduce

38

39

Preliminary Evaluation

§ Platform1: Xeon cluster with Mellanox IB ConnectX2
§ 32 nodes, 2 NUMA / node, 10 cores / NUMA

§ Platform2: Oakforest PACS
§ 8k Intel KNL nodes
§ Intel OmniPath interconnect
§ ~25 PF (6th on 2016 Nov Top500 list)

§ Intel Xeon Phi CPU 7250 model:
§ 68 CPU cores @ 1.40GHz
§ 4 HW thread / core

§ 272 logical OS CPUs altogether
§ 64 CPU cores used for McKernel, 4 for Linux
§ 16 GB MCDRAM high-bandwidth memory
§ 96 GB DRAM
§ SNC-4 flat mode:

§ 8 NUMA nodes (4 DRAM and 4 MCDRAM)

§ Linux 3.10 XPPSL
§ nohz_full on all application CPU cores

§ Containers
§ Ubuntu 14.04 in Docker and Singularity
§ Infiniband and OmniPath drivers contained

IMB PingPong – Containers impose ~zero overhead

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	
La
te
nc
y	
(u
s)
	

Message	size	

Na*ve	(Linux)	 Na*ve	(McKernel)	 Docker	on	Linux	
Docker	on	McKernel	 Singularity	on	Linux	 Singularity	on	McKernel	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

§ Xeon E5-2670 v2 @ 2.50GHz + MLNX Infiniband MT27600 [Connect-IB] + CentOS 7.2
§ Intel Compiler 2016.2.181, Intel MPI 5.1.3.181
§ Note: IB communication entirely in user-space!

40

41

GeoFEM (University of Tokyo) in container
§ Stencil code – weak scaling
§ Up to 18% improvement

0

2

4

6

8

10

12

14

16

1024 2048 4096 8192 16k 32k 64k

Fi
gu

re
	o
f	m

er
it	
(s
ol
ve
d	
pr
ob

le
m
	si
ze

no
rm

al
ize

d	
to
	e
xe
cu
tio

n	
tim

e)

Number	of	CPU	cores

Linux IHK/McKernel IHK/McKernel	+	Singularity

42

CCS-QCD (Hiroshima University) in container
§ Lattice quantum chromodynamics code - weak scaling
§ Up to 38% improvement

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1024 2048 4096 8192 16k 32k 64k

M
Fl
op

/s
ec
/n
od

e

Number	of	CPU	cores

Linux IHK/McKernel IHK/McKernel	+	Singularity

43

miniFE (CORAL benchmark suite) in container
§ Conjugate gradient - strong scaling
§ Up to 3.5X improvement (Linux falls over..)

0

2000000

4000000

6000000

8000000

10000000

12000000

1024 2048 4096 8192 16k 32k 64k

To
ta
l	C
G	
M
Fl
op

s

Number	of	CPU	cores

Linux

IHK/McKernel

IHK/McKernel	+	Singularity

3.5X

Containers’ limitations (or challenges) in HPC

§ User-space components need to match kernel driver’s version
§ E.g.: libmlx5-rdmav2.so needs to match IB kernel module
§ Workaround: dynamically inject libraries into container.. ?

§ Intel MPI and OpenMPI do dlopen() based on the driver env. variable
§ MPICH links directly to the shared library
§ Is it still a “container” if it accesses host specific files? Reproducibility?

§ E.g.: NVIDIA GPU drivers, same story..

§ mpirun on the spawning host needs to match MPI libraries in the
container
§ Workaround: spawn job from a container?
§ MPI ABI standard/compatibility with PMI implementations?

§ Application binary needs to match CPU architecture

§ Not exactly “create once, run everywhere” …

44

Conclusions
§ Increasingly diverse workloads will benefit from the full specialization of the

system software stack

§ Containers in HPC are promising for software packaging
§ Specialized user-space

§ Lightweight multi-kernels are beneficial for HPC workloads
§ Specialized kernel-space

§ Combining the two brings both of the benefits

§ Vision: a CoreOS like minimalistic Linux with workload specific multi-
kernels running containers

45

46

Thank you for your attention!
Questions?

