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Introduction

Current Trends in Embedded Systems

Embedded systems are everywhere:

 Industrial automation

 Energy production and distribution

 Healthcare / medical imaging

 Transportation and traffic control

 Consumer electronics

 …

…

In-field data analytics

Source: Siemens

Source: Siemens

Industry 4.0 Autonomous driving

Source: Bosch

Source: Siemens

Augmented / virtual reality

…

Requirements and key characteristics:

 Real-time capability (progress 

guarantees, nonblocking operations)

 Resource awareness (no dynamic 

memory allocation during operation)

 Portability / platform independence

 Energy efficiency

 Fine-grained control over hardware

 Heterogeneous systems

 …



Page 3 Unrestricted © Siemens AG 2016. All rights reserved

Introduction

Benefits of Multi-/Manycore in Embedded Systems

High computing 
power

High 
energy  

efficiency

Low 
material 

costs

 Functional consolidation

 Integration of previously

separate hardware

 Processing of more data in the same time

 Additional functionality and new features

 Battery-powered devices

 Passive cooling (no fans)

Source: Siemens
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Introduction

“In 2022, multicore will be everywhere.” (IEEE CS)

Parallel Patterns Library

Threading Building Blocks 

Most frameworks for parallel programming target 

desktop / server / HPC applications.

 Not suitable for embedded systems

 Hard real-time architectures with local memory and their programming

 Low-power scalable homogeneous and heterogeneous architectures

 …

Top challenges for multicore (IEEE CS 2022 Report)1

1 H. Alkhatib, P. Faraboschi, E. Frachtenberg, H. Kasahara, D. Lange, P. Laplante, A. Merchant, D. Milojicic, and K. Schwan. IEEE CS 2022 Report. IEEE Computer Society, 2014. 

www.computer.org/cms/Computer.org/ComputingNow/2022Report.pdf

Open MPI

http://www.computer.org/cms/Computer.org/ComputingNow/2022Report.pdf
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Introduction

Heterogeneous Systems

 Heterogeneous architectures provide high performance at low power consumption by 

incorporating specialized processing units to handle particular tasks.

 Processor manufacturers integrate general purpose processors together with accelerators like 

GPUs and FPGAs on the same chip.

Xilinx Zynq UltraScale MPSoC Nvidia Tegra K1 Qualcomm Snapdragon 810

 Increased complexity at silicon and system level

 Proprietary interfaces and tool-chains

 Long time-to-market, lack of portability
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Programming Model

Multicore Task Management API (MTAPI)

MTAPI

 Standardized API for task-parallel 

programming on a wide range of hardware 

architectures

 Developed and driven by practitioners of 

market-leading companies

 Part of Multicore-Association’s ecosystem

(MRAPI, MCAPI, SHIM, OpenAMP, …)

Contributing members:

Working group lead

Tasks

Tasks Queues Heterogeneous Systems

 Shared memory

 Distributed memory

 Different instruction

set architectures

The Multicore Association develops and promotes open specifications for multicore product development.
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Programming Model 

MTAPI for Heterogeneous Systems

Node Node Node Node

tasks

CPU

core

memory

GPU

memory

DSP
CPU

core

CPU

core

CPU

core

memory

sched. / lib. OS 1 OS 2

MTAPI runtime system (optionally MCAPI / MRAPI)

MTAPI tasksMTAPI tasks

MTAPI application

MTAPI tasks

Domain

Heterogeneous systems are modelled using MTAPI nodes and domains.
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Programming Model

MTAPI Terms in a Nut Shell

 Job: A piece of processing implemented by an action. Each job has a unique identifier.

 Action: Implementation of a job, may be hardware or software-defined.

 Task: Execution of a job resulting in the invocation of an action implementing the job associated 

with some data to be processed.

Task Job Action 2

Action 1

Action n

accomplishes

implemented by

MTAPI distinguishes between jobs, actions, and tasks:
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Programming Model

MTAPI for Heterogeneous Systems (cont.)

Example for the usage of MTAPI in heterogeneous systems:

Task 1

Task 2

Task 3

Job A

Job B

Action III

Node 1 (CPU)

A
p

p
lic

a
ti
o

n

Node 2 (GPU)

Node 3 (DSP)

Action I

Action II

Matrix mult.

FFT
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Programming Model

MTAPI for Heterogeneous Systems (cont.)

// Define actions

void Action_I(...) {CUDA_Kernel(arg->A, arg->B, arg->C, arg->n);}

void Action_II(...) {OpenCL_Kernel(arg->A, arg->B, arg->C, arg->n);}

void Action_III(...) {CPP_Kernel(arg->A, arg->B, arg->C, arg->n);}

// Create actions and associate them with jobs

mtapi_action_create(JOB_A, Action_I, ...);

mtapi_action_create(JOB_A, Action_II, ...);

mtapi_action_create(JOB_B, Action_III, ...);

// Start tasks

mtapi_task_hndl_t task[3];

task[0] = mtapi_task_start(0, JOB_A, args0, ...);

task[1] = mtapi_task_start(0, JOB_A, args1, ...);

task[2] = mtapi_task_start(0, JOB_B, args2, ...);

// Wait for task completion

mtapi_task_wait(task[0], MTAPI_INFINITE, ...);

mtapi_task_wait(task[1], MTAPI_INFINITE, ...);

mtapi_task_wait(task[2], MTAPI_INFINITE, ...);

Example with three MTAPI jobs
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Implementation

MTAPI Flow Chart
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Implementation

MTAPI Scheduling

Scheduler

Core 0

Worker

thread 0

Q00 Q01 Q02

Core 1

Worker

thread 1

Q10 Q11 Q12

Node 0 (CPU)

Work stealing

Unit 0

Bare

metal

Q0

Node 1 (DSP)

Work dealing

Example for scheduling MTAPI tasks in heterogeneous systems:
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Performance Evaluation

MTAPI Implementations

Operating system / hypervisor

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

Base library (abstraction layer)

Embedded Multicore Building Blocks (EMB²)1

 Open source library and runtime platform

for embedded multicore systems

 Easy parallelization of existing code

using high-level patterns

 Real-time capability, resource awareness 

 Fine-grained control over core usage

(task priorities, affinities)

 Lock-/wait-free implementation

UH-MTAPI2

 MTAPI implementation developed at the

Universities of Houston / Delaware

 Utilizes MCAPI for inter-node communication

and MRAPI for resource management

 Has been used as runtime system for

OpenMP programs

1 https://github.com/siemens/embb
2 https://github.com/MCAPro2015/OpenMP_MCA_Project

https://github.com/siemens/embb
https://github.com/MCAPro2015/OpenMP_MCA_Project
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Performance Evaluation

Testbed and Benchmarks

Reference platform:

 NVIDIA Jetson TK1 development kit

 Tegra K1 SoC which contains

 NVIDIA 4-Plus-1 Quad-Core ARM

Cortex-A15 processor

 Kepler GPU with 192 CUDA cores

Compiler:

 GCC 4.8.4

 NVCC V6.5.30

Benchmarks:

 Rodinia: Accelerating Compute-Intensive Applications with Accelerators1

 Barcelona OpenMP Task Suite (BOTS)2

1 https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
2 https://pm.bsc.es/projects/bots

Source: Nvidia

https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
https://pm.bsc.es/projects/bots
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Performance Evaluation

SparseLU and Heartwall

 MTAPI implementations and OpenMP perform comparably well

 Heartwall benchmark does not scale linearly (memory bound)

Performance relative to sequential implementation:
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Performance Evaluation

Matrix Multiplication

Normalized execution times for UH-MTAPI and Siemens MTAPI (EMB²):

 MTAPI-ARM faster than MTAPI-GPU for small matrices due to overhead for data copying

 MTAPI-GPU faster than MTAPI-ARM-GPU for larger matrices due to load imbalance

 MTAPI-ARM-GPU-Opt always fastest due to asynchronous transfers and variable block sizes
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Summary and Outlook

 Existing frameworks for parallel programming often not 

suitable for embedded systems

 SW development for heterogeneous systems-on-a-chip

(SoCs) challenging due to proprietary interfaces / tools

 MTAPI provides standard API for leveraging task parallelism

on embedded devices with multicore processors

 designed for homogeneous and heterogeneous systems

 support for shared and distributed memory

 can even be used bare metal (w/o OS)

 may serve as a basis for higher level programming models

 Experimental results show competitive performance

 Improved scheduling algorithms for heterogeneous and real-

time systems

 Support for further accelerators such as DSPs and FPGAs


