
Unrestricted © Siemens AG 2016. All rights reserved

Exploring Task Parallelism for Heterogeneous

Systems Using Multicore Task Management API

EuroPAR 2016 | ROME Workshop

Suyang Zhu1, Sunita Chandrasekaran2, Peng Sun1, Barbara Chapman1, Marcus Winter3, Tobias Schuele4

1 Dept. of Computer Science, University of Houston
2 Dept. of Computer and Information Sciences, University of Delaware
3 Hypnolords Gbr
4 Siemens Corporate Technology

Page 2 Unrestricted © Siemens AG 2016. All rights reserved

Introduction

Current Trends in Embedded Systems

Embedded systems are everywhere:

 Industrial automation

 Energy production and distribution

 Healthcare / medical imaging

 Transportation and traffic control

 Consumer electronics

 …

…

In-field data analytics

Source: Siemens

Source: Siemens

Industry 4.0 Autonomous driving

Source: Bosch

Source: Siemens

Augmented / virtual reality

…

Requirements and key characteristics:

 Real-time capability (progress

guarantees, nonblocking operations)

 Resource awareness (no dynamic

memory allocation during operation)

 Portability / platform independence

 Energy efficiency

 Fine-grained control over hardware

 Heterogeneous systems

 …

Page 3 Unrestricted © Siemens AG 2016. All rights reserved

Introduction

Benefits of Multi-/Manycore in Embedded Systems

High computing
power

High
energy

efficiency

Low
material

costs

 Functional consolidation

 Integration of previously

separate hardware

 Processing of more data in the same time

 Additional functionality and new features

 Battery-powered devices

 Passive cooling (no fans)

Source: Siemens

Page 4 Unrestricted © Siemens AG 2016. All rights reserved

Introduction

“In 2022, multicore will be everywhere.” (IEEE CS)

Parallel Patterns Library

Threading Building Blocks

Most frameworks for parallel programming target

desktop / server / HPC applications.

 Not suitable for embedded systems

 Hard real-time architectures with local memory and their programming

 Low-power scalable homogeneous and heterogeneous architectures

 …

Top challenges for multicore (IEEE CS 2022 Report)1

1 H. Alkhatib, P. Faraboschi, E. Frachtenberg, H. Kasahara, D. Lange, P. Laplante, A. Merchant, D. Milojicic, and K. Schwan. IEEE CS 2022 Report. IEEE Computer Society, 2014.

www.computer.org/cms/Computer.org/ComputingNow/2022Report.pdf

Open MPI

http://www.computer.org/cms/Computer.org/ComputingNow/2022Report.pdf

Page 5 Unrestricted © Siemens AG 2016. All rights reserved

Introduction

Heterogeneous Systems

 Heterogeneous architectures provide high performance at low power consumption by

incorporating specialized processing units to handle particular tasks.

 Processor manufacturers integrate general purpose processors together with accelerators like

GPUs and FPGAs on the same chip.

Xilinx Zynq UltraScale MPSoC Nvidia Tegra K1 Qualcomm Snapdragon 810

 Increased complexity at silicon and system level

 Proprietary interfaces and tool-chains

 Long time-to-market, lack of portability

Unrestricted © Siemens AG 2016. All rights reservedPage 6

Programming Model

Multicore Task Management API (MTAPI)

MTAPI

 Standardized API for task-parallel

programming on a wide range of hardware

architectures

 Developed and driven by practitioners of

market-leading companies

 Part of Multicore-Association’s ecosystem

(MRAPI, MCAPI, SHIM, OpenAMP, …)

Contributing members:

Working group lead

Tasks

Tasks Queues Heterogeneous Systems

 Shared memory

 Distributed memory

 Different instruction

set architectures

The Multicore Association develops and promotes open specifications for multicore product development.

Unrestricted © Siemens AG 2016. All rights reservedPage 7

Programming Model

MTAPI for Heterogeneous Systems

Node Node Node Node

tasks

CPU

core

memory

GPU

memory

DSP
CPU

core

CPU

core

CPU

core

memory

sched. / lib. OS 1 OS 2

MTAPI runtime system (optionally MCAPI / MRAPI)

MTAPI tasksMTAPI tasks

MTAPI application

MTAPI tasks

Domain

Heterogeneous systems are modelled using MTAPI nodes and domains.

Unrestricted © Siemens AG 2016. All rights reservedPage 8

Programming Model

MTAPI Terms in a Nut Shell

 Job: A piece of processing implemented by an action. Each job has a unique identifier.

 Action: Implementation of a job, may be hardware or software-defined.

 Task: Execution of a job resulting in the invocation of an action implementing the job associated

with some data to be processed.

Task Job Action 2

Action 1

Action n

accomplishes

implemented by

MTAPI distinguishes between jobs, actions, and tasks:

Unrestricted © Siemens AG 2016. All rights reservedPage 9

Programming Model

MTAPI for Heterogeneous Systems (cont.)

Example for the usage of MTAPI in heterogeneous systems:

Task 1

Task 2

Task 3

Job A

Job B

Action III

Node 1 (CPU)

A
p

p
lic

a
ti
o

n

Node 2 (GPU)

Node 3 (DSP)

Action I

Action II

Matrix mult.

FFT

Unrestricted © Siemens AG 2016. All rights reservedPage 10

Programming Model

MTAPI for Heterogeneous Systems (cont.)

// Define actions

void Action_I(...) {CUDA_Kernel(arg->A, arg->B, arg->C, arg->n);}

void Action_II(...) {OpenCL_Kernel(arg->A, arg->B, arg->C, arg->n);}

void Action_III(...) {CPP_Kernel(arg->A, arg->B, arg->C, arg->n);}

// Create actions and associate them with jobs

mtapi_action_create(JOB_A, Action_I, ...);

mtapi_action_create(JOB_A, Action_II, ...);

mtapi_action_create(JOB_B, Action_III, ...);

// Start tasks

mtapi_task_hndl_t task[3];

task[0] = mtapi_task_start(0, JOB_A, args0, ...);

task[1] = mtapi_task_start(0, JOB_A, args1, ...);

task[2] = mtapi_task_start(0, JOB_B, args2, ...);

// Wait for task completion

mtapi_task_wait(task[0], MTAPI_INFINITE, ...);

mtapi_task_wait(task[1], MTAPI_INFINITE, ...);

mtapi_task_wait(task[2], MTAPI_INFINITE, ...);

Example with three MTAPI jobs

Unrestricted © Siemens AG 2016. All rights reservedPage 11

Implementation

MTAPI Flow Chart

START

Task

complete

?

Task end

Switch to

another task

S

c

h

e

d

u

l

e

r

Get a task

from

scheduler

Process

task

Child

task?

Task

complete

Switch to

another task

No

Yes

Communication Layer

Sender Receiver

Local Node

Ready to receive

task from neighbor

nodes

Receive task

Process task

Create task

Wait for task

Create Job,

Action, Queue,

Group

Initialize MTAPI

environment.

No

Yes

Send task back to

its origin node

Remote Node

Communication

Layer

Local

Task

Remote

Task

Worker Team

Unrestricted © Siemens AG 2016. All rights reservedPage 12

Implementation

MTAPI Scheduling

Scheduler

Core 0

Worker

thread 0

Q00 Q01 Q02

Core 1

Worker

thread 1

Q10 Q11 Q12

Node 0 (CPU)

Work stealing

Unit 0

Bare

metal

Q0

Node 1 (DSP)

Work dealing

Example for scheduling MTAPI tasks in heterogeneous systems:

Unrestricted © Siemens AG 2016. All rights reservedPage 13

Performance Evaluation

MTAPI Implementations

Operating system / hypervisor

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

Base library (abstraction layer)

Embedded Multicore Building Blocks (EMB²)1

 Open source library and runtime platform

for embedded multicore systems

 Easy parallelization of existing code

using high-level patterns

 Real-time capability, resource awareness

 Fine-grained control over core usage

(task priorities, affinities)

 Lock-/wait-free implementation

UH-MTAPI2

 MTAPI implementation developed at the

Universities of Houston / Delaware

 Utilizes MCAPI for inter-node communication

and MRAPI for resource management

 Has been used as runtime system for

OpenMP programs

1 https://github.com/siemens/embb
2 https://github.com/MCAPro2015/OpenMP_MCA_Project

https://github.com/siemens/embb
https://github.com/MCAPro2015/OpenMP_MCA_Project

Unrestricted © Siemens AG 2016. All rights reservedPage 14

Performance Evaluation

Testbed and Benchmarks

Reference platform:

 NVIDIA Jetson TK1 development kit

 Tegra K1 SoC which contains

 NVIDIA 4-Plus-1 Quad-Core ARM

Cortex-A15 processor

 Kepler GPU with 192 CUDA cores

Compiler:

 GCC 4.8.4

 NVCC V6.5.30

Benchmarks:

 Rodinia: Accelerating Compute-Intensive Applications with Accelerators1

 Barcelona OpenMP Task Suite (BOTS)2

1 https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
2 https://pm.bsc.es/projects/bots

Source: Nvidia

https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators
https://pm.bsc.es/projects/bots

Unrestricted © Siemens AG 2016. All rights reservedPage 15

Performance Evaluation

SparseLU and Heartwall

 MTAPI implementations and OpenMP perform comparably well

 Heartwall benchmark does not scale linearly (memory bound)

Performance relative to sequential implementation:

Unrestricted © Siemens AG 2016. All rights reservedPage 16

Performance Evaluation

Matrix Multiplication

Normalized execution times for UH-MTAPI and Siemens MTAPI (EMB²):

 MTAPI-ARM faster than MTAPI-GPU for small matrices due to overhead for data copying

 MTAPI-GPU faster than MTAPI-ARM-GPU for larger matrices due to load imbalance

 MTAPI-ARM-GPU-Opt always fastest due to asynchronous transfers and variable block sizes

Unrestricted © Siemens AG 2016. All rights reservedPage 17Page 17

Summary and Outlook

 Existing frameworks for parallel programming often not

suitable for embedded systems

 SW development for heterogeneous systems-on-a-chip

(SoCs) challenging due to proprietary interfaces / tools

 MTAPI provides standard API for leveraging task parallelism

on embedded devices with multicore processors

 designed for homogeneous and heterogeneous systems

 support for shared and distributed memory

 can even be used bare metal (w/o OS)

 may serve as a basis for higher level programming models

 Experimental results show competitive performance

 Improved scheduling algorithms for heterogeneous and real-

time systems

 Support for further accelerators such as DSPs and FPGAs

