Brandenburg
U University of Technology
Cottbus - Senftenberg
ROME Workshop, August 23, 2016

DEALING WITH LAYERS OF OBFUSCATION
Th OS IN PSEUDO-UNIFORM MEMORY

Robert Kuban, Mark Simon Schops, Jorg Nolte,
Randolf Rotta rottaran@b-tu.de

"Research supported by German BMBF grant 011H13003.



PROBLEM: MEMORY LATENCY ON INTEL XEON PHI KNC

Example: Measuring avg. time is unstable between restarts

Affects: micro-benchmarks,
algorithm tuning,
developer’s sanity. ..
also application performance?

= Outline
1. Causes?
2. Solutions?
3. Is it worthwhile?
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CAUSES: MULTIPLE PERFORMANCE BOTTLENECKS

1. compute bound

1-Causes?

. memory throughput:

streaming, matrix alg.

memory latency:
key-value stores, graphs
coherence latency:
synchronisation variable

coherence throughput:
many sync. variables
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HW SOLUTION: STRIPING TO MAXIMISE THROUGHPUT

1. striping over memory channels, banks, and coherence directories
2. past: NUMA throughput bottlenecks = mostly local striping
3. many-cores: no throughput bottlenecks but larger network
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HW SOLUTION: STRIPING TO MAXIMISE THROUGHPUT

1. striping over memory channels, banks, and coherence directories
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3. many-cores: no throughput bottlenecks but larger network
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INTEL XEON PHI KNC IN DETAIL

4 threads 57 - 61 cores 4 threads
- - - - -
L2 cache L2 cache

memory
ctrl |directory | 64 directories
- - - - - -

memory
ctrl bi-directional ring network

- memory striping by (PhysAddr/62)&0xF."

2X
memory
ctrl
2x
memory
ctrl

- avg. remote L2 read ~ 240 cycles, contention >16 threads.2

|directory |

- some lines near to memory, up to 28% app. speedup possible.3

1 John McCalpin: https://software. intel.com/en-us/forums/intel-many-integrated-core/topic/586138
2Ramos et al: Modeling communication in cache-coherent SMP systems: A case-study with Xeon Phi.
3Balazs Gerofi et al: Exploiting Hidden Non-uniformity of Uniform Memory Access on Manycore CPUs
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REVERSE ENGINEERING KNC’S DIRECTORY STRIPING
- measure: fetch line currently owned by neighbour L2
- two cores, two lines: one for measurement, other for coordination
- minimum RDTSC cycles, MyThOS kernel as bare-metal env.

2-Solutions?
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RESULTS: PSEUDO-RANDOMLY SCATTERED

~140 cycles best case vs. ~400 cycles worst case
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RESULTS: RECONSTRUCTED MAPPING OF LINES TO DIRECTORIES

Enables quick initialisation without measurements
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IMPLICATIONS

Support in the MyThOS kernel

- per page: base address for line — directory
- per node: balanced mapping for directory — nearby core
- kernel objects can allocate local lines for sync. vars.

Application challenges

avoid >16 threads accessing same line

co-locate dependent tasks
- squeeze synchronisation into cache lines

no easy migration after allocation
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PING-PONG BENCHMARK: BUSY POLLING, THEN WRITE

read
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Placement: .EI worst E3 best
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PING-PONG BENCHMARK: TIMES DON’T ADD UP

core

L2 cache

—3

core
L2 cache
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PING-PONG BENCHMARK: AVOID INVALIDATION BROADCASTS!

atomic fetch—and-add
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INTEL XEON PHI KNL: DOES IT APPLY?

MCDRAM \ MCDRAM | MCDRAM \ MCDRAM

g :
2

DHR4 DOR4

1

MCORAM | MCDRAM MCORAM | MCDRAM

- modes: all2all, quadrant, sub-numa; as memory or L3 cache
- benchmarks?*: quadrant > all2all > sub-numa

= memory + directory striping persists
smaller latency? overhead of Y-X crossing?

4Carlos Rosales: A Comparative Study of Application Performance and Scalability on the Intel Knights Landing Processor
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CONCLUSIONS

memory striping # directory striping

- good for throughput-bound computations,
bad for latency- and synchronisation-bound computations

Intel KNC: pseudo-uniform

- up to 3x synchronisation latency
but avoiding broadcasts and contention equally important

- benchmarks: average over multiple random allocations

Future. ..

- MyThOS: evaluate impact on in-kernel synchronisation
- Intel KNL: latency and contention benchmarks
- HW: dedicated memory/network for synchronisation !?
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RESULTS: UNEVEN MAPPING, DEPENDS ON ENABLED CORES!
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READING FROM MEMORY: LATENCY FROM CORE 0
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READING FROM MEMORY: LATENCY FROM BEST CORE
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“PSEUDO-UNIFORM” MEMORY ARCHITECTURES

Good for throughput bound computations
- HW maximises average throughput over large data sets,
average latency hidden by prefetching & many threads

= no need for data partitioning and placement,
can focus on computation balance

Bad for latency and synchronisation bound computations

- most synchronisation variables are very small,
prefetching does not help

- average latency does not apply,
permanent overhead depending on placement

5- Appendix
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