Brandenburg
U University of Technology
Cottbus - Senftenberg
ROME Workshop, August 23, 2016

DEALING WITH LAYERS OF OBFUSCATION
Th OS IN PSEUDO-UNIFORM MEMORY

Robert Kuban, Mark Simon Schops, Jorg Nolte,
Randolf Rotta rottaran@b-tu.de

"Research supported by German BMBF grant 011H13003.

PROBLEM: MEMORY LATENCY ON INTEL XEON PHI KNC

Example: Measuring avg. time is unstable between restarts

Affects: micro-benchmarks,
algorithm tuning,
developer’s sanity. ..
also application performance?

= Outline
1. Causes?
2. Solutions?
3. Is it worthwhile?

Brandenburg
OUTLINE btu University of Technology
Cottbus - Senftenberg

1. Causes?

1.Causes? °

CAUSES: MULTIPLE PERFORMANCE BOTTLENECKS

1. compute bound

1-Causes?

. memory throughput:

streaming, matrix alg.

memory latency:
key-value stores, graphs
coherence latency:
synchronisation variable

coherence throughput:
many sync. variables

| coherence directory |

2,3

| memory

HW SOLUTION: STRIPING TO MAXIMISE THROUGHPUT

1. striping over memory channels, banks, and coherence directories
2. past: NUMA throughput bottlenecks = mostly local striping
3. many-cores: no throughput bottlenecks but larger network

core | core core | | core
- - - - - - -

cache cache cache cache

| directory | | directory | | directory |

/N SN\

memory memory memory memory memory memory

1-Causes?]

HW SOLUTION: STRIPING TO MAXIMISE THROUGHPUT
1. striping over memory channels, banks, and coherence directories
2. past: NUMA throughput bottlenecks = mostly local striping
3. many-cores: no throughput bottlenecks but larger network

core | core core | | core
- - - - - - -
cache cache cache cache

| directory Y directory g directory |

/ \

memory memory memory memory memory memory

N

1.Causes? °

HW SOLUTION: STRIPING TO MAXIMISE THROUGHPUT

1. striping over memory channels, banks, and coherence directories
2. past: NUMA throughput bottlenecks = mostly local striping
3. many-cores: no throughput bottlenecks but larger network

core core core core

directory directory| ® ® ® @ o e @ (directory| |directory|

| memory | | memory | | memory | | memory | | memory | | memory |

1-Causes?]

INTEL XEON PHI KNC IN DETAIL

4 threads 57 - 61 cores 4 threads
- - - - -
L2 cache L2 cache

memory
ctrl |directory | 64 directories
- - - - - -

memory
ctrl bi-directional ring network

- memory striping by (PhysAddr/62)&0xF."

2X
memory
ctrl
2x
memory
ctrl

- avg. remote L2 read ~ 240 cycles, contention >16 threads.2

|directory |

- some lines near to memory, up to 28% app. speedup possible.3

1 John McCalpin: https://software. intel.com/en-us/forums/intel-many-integrated-core/topic/586138
2Ramos et al: Modeling communication in cache-coherent SMP systems: A case-study with Xeon Phi.
3Balazs Gerofi et al: Exploiting Hidden Non-uniformity of Uniform Memory Access on Manycore CPUs

1-Causes?

https://software.intel.com/en-us/forums/intel-many-integrated-core/topic/586138

Brandenburg
OUTLINE btu University of Technology
Cottbus - Senftenberg

2. Solutions?

2-Solutions? °

REVERSE ENGINEERING KNC’S DIRECTORY STRIPING
- measure: fetch line currently owned by neighbour L2
- two cores, two lines: one for measurement, other for coordination
- minimum RDTSC cycles, MyThOS kernel as bare-metal env.

2-Solutions?

core
' L2 cache
directory - el
core core
L2 cache L2 cache
. 4
directory

RESULTS: PSEUDO-RANDOMLY SCATTERED

~140 cycles best case vs. ~400 cycles worst case

o 400
e
o
e
S 300
£
S
b ® Pe® ®
300 KPR T N
]
5] o &8 S8 &w o o % >, o
-_— aP’0
WP
100 I I
0 256 512 768 1024

cache line

2-Solutions? eoe0o0o0

RESULTS: RECONSTRUCTED MAPPING OF LINES TO DIRECTORIES

Enables quick initialisation without measurements

400

{]
A o “'n.
o) oo
o °
o P Sog,
S 300)
o L4]
*%
g i 8,
o of®
E o0
> o8®
o 00®®
% 200
Q
[+ 00 8,
£ '
2o’ *8ey
100
0 16 32 48 64

tag directory

2-Solutions?] 10

IMPLICATIONS

Support in the MyThOS kernel

- per page: base address for line — directory
- per node: balanced mapping for directory — nearby core
- kernel objects can allocate local lines for sync. vars.

Application challenges

avoid >16 threads accessing same line

co-locate dependent tasks
- squeeze synchronisation into cache lines

no easy migration after allocation

2-Solutions?

OUTLINE

3. Is it worthwhile?

3-ls it worthwhile?

PING-PONG BENCHMARK: BUSY POLLING, THEN WRITE

read

1600 !

Placement: .EI worst E3 best

é e
=

1400

1200

H
800 H
600 é:

400

=
o
o
o

—

mean latency [ns]

200

1 15 30
distance between the cores

3-ls it worthwhile?

PING-PONG BENCHMARK: TIMES DON’T ADD UP

core

L2 cache

—3

core
L2 cache

3-ls it worthwhile?

) <
wectory

5:invalidation
broadcast

4:rfo

6:ack

PING-PONG BENCHMARK: AVOID INVALIDATION BROADCASTS!

atomic fetch—and-add

1600
Placement: EJ worst E3 best
1400
2 1200
>
2 1000
L
8 goo
E 600 +
400 o El—
—]
200 —
1 15 30

distance between the cores

3-ls it worthwhile?

INTEL XEON PHI KNL: DOES IT APPLY?

MCDRAM \ MCDRAM | MCDRAM \ MCDRAM

g :
2

DHR4 DOR4

1

MCORAM | MCDRAM MCORAM | MCDRAM

- modes: all2all, quadrant, sub-numa; as memory or L3 cache
- benchmarks?*: quadrant > all2all > sub-numa

= memory + directory striping persists
smaller latency? overhead of Y-X crossing?

4Carlos Rosales: A Comparative Study of Application Performance and Scalability on the Intel Knights Landing Processor

3-ls it worthwhile? e 16

OUTLINE

4. Conclusions

4-Conclusions

CONCLUSIONS

memory striping # directory striping

- good for throughput-bound computations,
bad for latency- and synchronisation-bound computations

Intel KNC: pseudo-uniform

- up to 3x synchronisation latency
but avoiding broadcasts and contention equally important

- benchmarks: average over multiple random allocations

Future. ..

- MyThOS: evaluate impact on in-kernel synchronisation
- Intel KNL: latency and contention benchmarks
- HW: dedicated memory/network for synchronisation !?

4-Conclusions ° 18

OUTLINE

5. Appendix

5- Appendix

b-tu

Brandenburg
University of Technology
Cottbus - Senftenberg

RESULTS: UNEVEN MAPPING, DEPENDS ON ENABLED CORES!

4%

w
Y

nearest cache lines
= N
X X

0 20 40 60
core

0%

5- Appendix]

READING FROM MEMORY: LATENCY FROM CORE 0

400
o
Q
o
(8]
£ 300
o
>
(]
g
5 200

100

0 1024 2048 3072 4096 5120 6144 7168 8192
cache line

5- Appendix o0 000 21

READING FROM MEMORY: LATENCY FROM BEST CORE

400
Q
o
(8]
g
© 300
IS
o
oy
."Cﬁ 200
ks

100

0 1024 2048 3072 4096 5120 6144 7168 8192
cache line

5-Appendix 0000 22

“PSEUDO-UNIFORM” MEMORY ARCHITECTURES

Good for throughput bound computations
- HW maximises average throughput over large data sets,
average latency hidden by prefetching & many threads

= no need for data partitioning and placement,
can focus on computation balance

Bad for latency and synchronisation bound computations

- most synchronisation variables are very small,
prefetching does not help

- average latency does not apply,
permanent overhead depending on placement

5- Appendix

23

	Causes?
	Solutions?
	Is it worthwhile?
	Conclusions
	Appendix
	Appendix

