Brandenburg
U University of Technology
Cottbus - Senftenberg

26! August 2014

SHARED MEMORY IN THE
MANY-CORE AGE

Stefan Niirnberger, Gabor Drescher,
Randolf Rotta, Wolfgang
Schrdder-Preikschat, and Jérg Nolte

BTU Cottbus-Senftenberg
FAU Erlangen-Nuremberg



Brandenburg
DISTRIBUTED SHARED MEMORY... b.tu University of Technology

Cottbus - Senftenberg

What does it provide?

- enable shared memory programming where hardware does not (directly)
- either in HW (e.g. Cache Coherence), HW/SW (e.g. most page-based

DSMs), SW (Global Arrays, X10, PGAS systems, .. .)
Can simplify programming:

- handling of complex and dynamic data dependencies
- decouples task scheduling from data placement
- enables load balancing when data dependencies are unknown upfront

1-The Case for DSM in the Many-Core Age o 2



Brandenburg

...FOR MANY-CORE SYSTEMS??? b.tu University of Technology

Cottbus - Senftenberg

Hardware Characteristics changed!

Many-Core hardware looks vastly different from what DSM systems were
designed for in the past.

New Memory Models!

Shared memory programming came a long way in defining sane semantics
for concurrent memory access.

Programming Environments evolved!
DSM will coexist and cooperate with other programming models.

1-The Case for DSM in the Many-Core Age ° 3



A NEW GOLDEN AGE FOR DSM RESEARCH?

1. Many-Core Challenges

2. Memory Model Opportunities

3. Building Blocks for a DSM System

1-The Case for DSM in the Many-Core Age ° 4



Brandenburg

A CHANGE IN ARCHITECTURE b.tu University of Technology

Cottbus - Senftenberg

past: network of single-cores
today: network of multi- and many-cores (e.g. Xeon Phi)

General many-core implications:

hardware provides basic consistency within node

intra-node parallelism is mandatory
- low-latency networks vs. slow cores
inherent NUMA hierarchy

2-Many-Core Challenges o 5



Brandenburg

MUST EXPLOIT CONSISTENCY ISLANDS b.tu University of Technology

Cottbus - Senftenberg
Powerful Memory Model within Consistency Islands

- illusion of shared memory
- observability of stores within the island
- synchronizing memory operations

Between Consistency Islands

- networks provide remote memory access
- consistency does not scale-out across nodes

no observability of stores in other islands
- limited memory order enforcement

Why are they important?

- separate replica for each thread waste memory and cache space
- can use efficient hardware caches

- threads sharing replica split cost of management
2-Many-Core Challenges ° 6



Brandenburg
MUST EXPLOIT PARALLELISM b.tu University of Technology

Cottbus - Senftenberg

Remote memory is quite fast

- typical remote memory access (IB put/get) is ~ 2us

- latency of approx. 8 cache misses (~ 260 cycles/miss)
= low overhead management is a must
= parallelize DSM protocol/management

The effect of Huge Pages

- using 2MB pages instead of 4k increases TLB reach (important!)
- page-based DSM needs to deal with factor x512 in size
= parallelize and vectorize diff/merge

2-Many-Core Challenges ] 7



Brandenburg
A CHANGE IN MEMORY MODELS b.tu University of Technology

Cottbus - Senftenberg

past: evade communication, hide latency
today: be explicit about concurrency

DSM inspired memory models

“What can we optimize? How can we eliminate synchronization overhead?”
- DSM systems introduced memory models that fit their protocol
- non-uniform models: (Lazy) Release Consistency, Scope Consistency,

Uniform vs. non-uniform models

- uniform models consider only data read and write
- non-uniform models add explicit synchronization primitives

3-Memory Model Opportunities ] 8



Brandenburg
CONSISTENCY IS RELAXED TODAY b.tu University of Technology

Cottbus - Senftenberg

The Memory Consistency Model

describes a memory abstraction’s behavior and what
measures are provided to make it behave!

Relaxed Memory Models
Use relaxation of memory consistency for optimization

HW: start from weak model and add measures (e.g. fences) to
strengthen (e.g. Sparc-TSO, ARM, ...)

SW: start from strong model and add hints (annotations) to
weaken (e.g. C/C++11 with low level atomics)

3-Memory Model Opportunities o 9



Brandenburg
DATA RACES VS. CONSISTENCY btu ?Sffbemifygﬂicf’b"e‘?';gy

- There is no benign data race!

- all data races threaten consistency, operation outcome is undefined
= guarantee SC for DRF only (or probably SC for HRF)
= further relaxations based on C++11 model

Operations on Shared Memory

Non-atomic Ops Atomic Ops Fences (Memory Barriers)

Atomic Load/Store Atomic RMW

3-Memory Model Opportunities



Brandenburg

AND THEN THERE’S TM btu Universityof Technology
ottbus - Senftenberg

Transactional Memory affects the whole Memory Model

- not a trivial thing (see Intel TSX bug)
- reactive data race freedom
- expected to allow lock elision

Software Transactional Memory

- Language extensions for transactions available
- provides data access and modification tracking in transactions
= viable alternative to access traps of page-based DSM

3-Memory Model Opportunities ] 11



Brandenburg
A CHANGE IN USAGE STRATEGY b.tu University of Technology

Cottbus - Senftenberg
past: “one size fits all” approach

today: in combination with PGAS, function shipping, message
passing

The former DSM approaches

- Wrappers running legacy code (wrap C-library calls, OS-based)
- Library/Framework based
- Threads cannot be implemented as library (H.-J. Boehm)

- Language embedded

A future for DSMs. ..
- use DSM below the programming model, not as programming model
- Enable use of modern memory models across clusters
- Most programs benefit from caching (in general)
= Think: ‘PGAS + Caching’, ‘Software Managed Caches’

4-Building Blocks for a DSM System o 12



Brandenburg
FROM APPLICATION TO PLATFORM b.tu University of Technology

Cottbus - Senftenberg

- optimal DSM strategy depends on target programming/memory model,
access patterns, hardware characteristics, . ..

- evaluate many protocols with common mechanisms
= need infrastructure (framework) for the commonalities and variabilities

Memory Models: Hardware Platforms:
Applications ——» Release/Entry, ——3» many-core processors,
C++11, STM... heterogeneous clusters...

Elementary Operations Communication Layer

4-Building Blocks for a DSM System ° 13



Brandenburg
ELEMENTARY MECHANISMS b.tu University of Technology

Cottbus - Senftenberg

Elementary PGAS operations

Allocators for globally coordinated memory management
Remote memory access
Atomic memory operations
Thread groups to represent consistency islands

Elementary operations for replication

Replica management

- creation / update / invalidation
- asynchronous replica notifications
- including efficient replica group update/invalidation

Diff/Merge mechanism,
Access tracking for read and write access to each replica,
Versioned modification management

4 -Building Blocks for a DSM System ] 14



Brandenburg

WHERE DO WE GO FROM HERE? b.tu University of Technology

Cottbus - Senftenberg

- implement minimal event-driven kernel
- implement basic mechanism on top of kernel
- envisioned as lightweight "firmware" for many-core consistency

Research Projects

COKE consistency kernel exploring elementary operations
MyThOS many threads operating system
OctoPOS includes evaluation of new memory models

5-Conclusions ] 15



Brandenburg
CONCLUSIONS U University of Technology
Cottbus - Senftenberg

It is an interesting time to do DSM research again

- Consistency Islands need to be exploited
- Overhead of replica management is challenging

Memory Consistency Models changed dramatically

- C/C++11, SC for DREF, ... for software portability
- Old DSM models are not the best fit, inhibit portability

Infrastructure for DSM is needed

- DSMs share common tasks (allocate, update/invalidate, .. .)
- Elementary operations allow for experimental implementations

5-Conclusions ° 16



	Many-Core Challenges
	Memory Model Opportunities
	Building Blocks for a DSM System

