
ROME Workshop @ IPDPS
Vancouver

Memory Footprint of
Locality Information

On Many-Core Platforms

Brice Goglin

Inria Bordeaux – Sud-Ouest – France

2018/05/25



ROME 2018

Locality Matters to HPC Applications



ROME 2018

Locality Matters for I/O too

GPUs

IB HCA



ROME 2018

Compute NodesCompute NodesCompute Nodes

Who Needs Locality in the HPC Stack?

Front-end Node

Resource
Manager

Gather Topology

Process
Launcher

Daemon

Process Process Process

Launch MPI Ranks

MPI Lib

Runtime

Threads

Kernels



ROME 2018

Memory in HPC Platforms
Top500 – 2017/11

Rank Name Cores Memory GB per Core

#1 Sunway TaihuLight 10 649 600 1.31 PB 0.12

#2 Tianhe-2 3 120 000 1 PB 0.32

#3 Piz Daint 361 760 340 TB 1.06

#4 Gyoukou 19 860 000 575 TB 0.028

#5 Titan 560 640 710 TB 1.27

#6 Sequoia 1 572 864 1.5 PB 1

#7 Trinity 301 056
+ 678 912

2 PB 2

#8 Cori 622 336 878 TB 1.41

#9 Oakforest-PACS 556 104 919 TB 1.65

#10 K-computer 705 024 1.4 PB 2



ROME 2018

hwloc’s Modeling of Platforms

● Tree of hierarchical resource objects (hwloc_obj structure)
● With many attributes

● Location with respect to CPU and memory resources (bitmaps)
● Indexes
● Links to parent, children, siblings, cousins
● Type-specific attributes

● Amount of memory, kind of cache, etc.
● Strings for custom attributes

● CPU model, MAC address, name, PCI vendor, etc.

● A little bit of system-wide info
● hwloc_topology structure



ROME 2018

hwloc Memory Footprint on KNL

● Between 400 and 500 objects
● 256 hwthreads (PUs), 64 caches per level, 64 cores
● Between 1 and 8 NUMA nodes
● Some I/O objects

● About 700kB total
● Some users complain

● They use many processes per node
● They want to keep that memory available for the application

● Even if it’s about 0.1 percent of the available memory per core
● Things will get worse in the future



ROME 2018

Horizontal Filtering of Available Resources
Only part of the platform is available to each job

Machine

Package

Memory

CoreCore

NIC
Memory

CoreCore

Package

Memory

CoreCore

NIC
Memory

CoreCore



ROME 2018

Vertical Filtering of Useful Resources
Some levels aren’t useful

L2

L1

Core

L1

Core

L2

L1

Core

L1

Core

LLC

Package

L2

L1

Core

L1

Core

L2

L1

Core

L1

Core

LLC

Package

Machine



ROME 2018

Possible Ways to Manage Multiple Clients

● Native Discovery
● Expensive, should be performed as rarely as possible (PDP’17)

● XML exchange
● Much faster
● Still instantiates multiple topologies in memory

● Centralizing in a server
● Single instance
● Requires to redirect process queries to the server

● Slower, API change?

● Shared memory



ROME 2018

Shared Memory, obviously but ...

● hwloc was designed in 2009
● Many objects attributes, many ways to traverse the topology

● We decided we didn’t want so maaaaaany accessor functions to 
manipulate these attributes and pointers

● Many users are tied to the existing API
● Pointers must remain valid, even if mapped in another 

process
● Means all processes must map at the same virtual address

● Or we would have to replace the entire existing API



ROME 2018

The Virtual Address Space is mostly empty

● 128TB of VA on current x86 platforms
● 64PB on next-generation (Intel la57 extension)

● Similar values on ARM64 and Power
● The available per-core physical memory is MUCH lower (GB)

● Trinity/KNL (96GB/node)
● 99.925% of VM free if one process per node
● 99.9988% if one process per core

● Summit/P9 (512GB/node) 99.2% and 99.981% respectively



ROME 2018

Virtual Address Space Layout on Linux

code

heap

file mapping

library 3

library 2

library 1

stack

Free Space 
>100TB

code

heap

file mapping
library 3

library 2

library 1

stack

Free Space 
>100TB

code

heap

file mapping

library 3

library 2

library 1

stack

Free Space 
>100TB

candidate location for shmem topology



ROME 2018

Implementation in Open MPI

● One ORTE daemon per node
● Finds the largest hole in its own virtual address space

● Doesn’t know what other processes will look like
● Allocates a shared memory region there
● Stores the hwloc topology in it

● MPI ranks map that shared region
● Use the hwloc topology contained there
● If mapping failed (e.g. virtual address range not available)

● Fall back to XML as usual



ROME 2018

hwloc shmem topology

attrs obj3

obj2 obj1

shmem clone

Shared Memory

adopted 
topology

libhwloc.so

Slave

topology

libhwloc.so

obj1

obj3

obj2attrs

Master

hwloc_shmem_topology_write()
hwloc_shmem_topology_adopt()



ROME 2018

Experimentation Platforms

● KNL64 = 430 hwloc objects
● Intel Xeon Phi 7230 (64 cores, 1.3GHz)
● SNC-4, Flat

● NUMA96 = 405 hwloc objects
● 4x Intel Xeon E7-8890v4 (24 cores each, 2.2GHz)
● Cluster-on-Die, no Hyper-threading

● Normal24 = 97 objects
● 2x Intel Xeon E5-2680v3 (12 cores each, 2.5GHz)
● Cluster-on-Die, no Hyper-threading



ROME 2018

Memory Footprint per MPI rank

Native Discovery XML Shared-Memory No topology

KNL64 2.21MiB 2.35MiB 1.614MiB 1.613MiB

NUMA96 1.82MiB 1.94MiB 1.230MiB 1.229MiB

Normal24 1.74MiB 1.78MiB 1.535MiB 1.534MiB

● ORTE hello instrumented with mallinfo



ROME 2018

Memory Saving per Node

Saving per Node

KNL64 1 process 0

2 processes 500kiB

64 processes (1 per core) 31MiB

256 processes (1 per hwthread) 127MiB

NUMA96 1 process 0

2 processes 590kiB

96 processes (1 per core) 56MiB

Normal24 1 process 0

2 processes 200kiB

24 processes (1 per core) 4.6MiB



ROME 2018

Launch Time

Native Discovery XML Shared-Memory Speedup vs XML

KNL64 – 64 procs 9.69s 4.16s 1.68s x 2.48

KNL64 – 256 procs 47.20s 18.45s 7.02s x 2.63

NUMA96 – 96 procs 7.29s 1.17s 0.56s x 2.10

Normal24 – 24 procs 0.84s 0.53s 0.47s x 1.13



ROME 2018

Launch Time – KNL64



ROME 2018

Conclusion
● Many components of the HPC stack use topology 

information
● And many processes per node

● Must share topology information to reduce memory 
footprint

● Already needed on many-core platforms



ROME 2018

Contribution

● hwloc may now place topology in shared-memory
● We designed a way to use the same virtual address in 

all processes
● Required to maintain compatibility with old hwloc API

● Available in Open MPI 4.0 and hwloc 2.0
● Reduces footprint to a single topology per node
● Reduces launch time significantly



ROME 2018

Future Work

● Share topology between jobs with different sets of 
allocated resources on same node

● Extend to other process managers
● Slurm’s srun, etc.

● Propagate shared topology information to all layers 
inside each process

● Cooperation between MPI, OpenMP, etc.



Thank you for your attention

Brice.Goglin@inria.fr


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

