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Locality Matters to HPC Applications
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Locality Matters for I/O too
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Memory in HPC Platforms
Top500 – 2017/11

Rank Name Cores Memory GB per Core

#1 Sunway TaihuLight 10 649 600 1.31 PB 0.12

#2 Tianhe-2 3 120 000 1 PB 0.32

#3 Piz Daint 361 760 340 TB 1.06

#4 Gyoukou 19 860 000 575 TB 0.028

#5 Titan 560 640 710 TB 1.27

#6 Sequoia 1 572 864 1.5 PB 1

#7 Trinity 301 056
+ 678 912

2 PB 2

#8 Cori 622 336 878 TB 1.41

#9 Oakforest-PACS 556 104 919 TB 1.65

#10 K-computer 705 024 1.4 PB 2
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hwloc’s Modeling of Platforms

● Tree of hierarchical resource objects (hwloc_obj structure)
● With many attributes

● Location with respect to CPU and memory resources (bitmaps)
● Indexes
● Links to parent, children, siblings, cousins
● Type-specific attributes

● Amount of memory, kind of cache, etc.
● Strings for custom attributes

● CPU model, MAC address, name, PCI vendor, etc.

● A little bit of system-wide info
● hwloc_topology structure
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hwloc Memory Footprint on KNL

● Between 400 and 500 objects
● 256 hwthreads (PUs), 64 caches per level, 64 cores
● Between 1 and 8 NUMA nodes
● Some I/O objects

● About 700kB total
● Some users complain

● They use many processes per node
● They want to keep that memory available for the application

● Even if it’s about 0.1 percent of the available memory per core
● Things will get worse in the future
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Horizontal Filtering of Available Resources
Only part of the platform is available to each job
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Vertical Filtering of Useful Resources
Some levels aren’t useful
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Possible Ways to Manage Multiple Clients

● Native Discovery
● Expensive, should be performed as rarely as possible (PDP’17)

● XML exchange
● Much faster
● Still instantiates multiple topologies in memory

● Centralizing in a server
● Single instance
● Requires to redirect process queries to the server

● Slower, API change?

● Shared memory
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Shared Memory, obviously but ...

● hwloc was designed in 2009
● Many objects attributes, many ways to traverse the topology

● We decided we didn’t want so maaaaaany accessor functions to 
manipulate these attributes and pointers

● Many users are tied to the existing API
● Pointers must remain valid, even if mapped in another 

process
● Means all processes must map at the same virtual address

● Or we would have to replace the entire existing API
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The Virtual Address Space is mostly empty

● 128TB of VA on current x86 platforms
● 64PB on next-generation (Intel la57 extension)

● Similar values on ARM64 and Power
● The available per-core physical memory is MUCH lower (GB)

● Trinity/KNL (96GB/node)
● 99.925% of VM free if one process per node
● 99.9988% if one process per core

● Summit/P9 (512GB/node) 99.2% and 99.981% respectively
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Virtual Address Space Layout on Linux
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Implementation in Open MPI

● One ORTE daemon per node
● Finds the largest hole in its own virtual address space

● Doesn’t know what other processes will look like
● Allocates a shared memory region there
● Stores the hwloc topology in it

● MPI ranks map that shared region
● Use the hwloc topology contained there
● If mapping failed (e.g. virtual address range not available)

● Fall back to XML as usual
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hwloc shmem topology
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Experimentation Platforms

● KNL64 = 430 hwloc objects
● Intel Xeon Phi 7230 (64 cores, 1.3GHz)
● SNC-4, Flat

● NUMA96 = 405 hwloc objects
● 4x Intel Xeon E7-8890v4 (24 cores each, 2.2GHz)
● Cluster-on-Die, no Hyper-threading

● Normal24 = 97 objects
● 2x Intel Xeon E5-2680v3 (12 cores each, 2.5GHz)
● Cluster-on-Die, no Hyper-threading
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Memory Footprint per MPI rank

Native Discovery XML Shared-Memory No topology

KNL64 2.21MiB 2.35MiB 1.614MiB 1.613MiB

NUMA96 1.82MiB 1.94MiB 1.230MiB 1.229MiB

Normal24 1.74MiB 1.78MiB 1.535MiB 1.534MiB

● ORTE hello instrumented with mallinfo
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Memory Saving per Node

Saving per Node

KNL64 1 process 0

2 processes 500kiB

64 processes (1 per core) 31MiB

256 processes (1 per hwthread) 127MiB

NUMA96 1 process 0

2 processes 590kiB

96 processes (1 per core) 56MiB

Normal24 1 process 0

2 processes 200kiB

24 processes (1 per core) 4.6MiB
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Launch Time

Native Discovery XML Shared-Memory Speedup vs XML

KNL64 – 64 procs 9.69s 4.16s 1.68s x 2.48

KNL64 – 256 procs 47.20s 18.45s 7.02s x 2.63

NUMA96 – 96 procs 7.29s 1.17s 0.56s x 2.10

Normal24 – 24 procs 0.84s 0.53s 0.47s x 1.13



ROME 2018

Launch Time – KNL64
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Conclusion
● Many components of the HPC stack use topology 

information
● And many processes per node

● Must share topology information to reduce memory 
footprint

● Already needed on many-core platforms
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Contribution

● hwloc may now place topology in shared-memory
● We designed a way to use the same virtual address in 

all processes
● Required to maintain compatibility with old hwloc API

● Available in Open MPI 4.0 and hwloc 2.0
● Reduces footprint to a single topology per node
● Reduces launch time significantly
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Future Work

● Share topology between jobs with different sets of 
allocated resources on same node

● Extend to other process managers
● Slurm’s srun, etc.

● Propagate shared topology information to all layers 
inside each process

● Cooperation between MPI, OpenMP, etc.



Thank you for your attention

Brice.Goglin@inria.fr
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