
ROME

Extreme-Scale Operating Systems
Rolf Riesen

23 August 2016

Copyright c© 2016 Intel Corporation. All rights reserved.



Legal Disclaimer
Introduction

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
2

Intel and the Intel logo are trademarks of Intel Corporation in the U.S.
and/or other countries. Linux is the registered trademark of Linus
Torvalds in the U.S. and other countries.

∗Other names and brands may be claimed as the property of others.

Intel technologies features and benefits depend on system configu-
ration and may require enabled hardware, software or service activa-
tion. Learn more at intel.com, or from the OEM or retailer.

Copyright c© 2016, Intel Corporation. All rights reserved.

intel.com


Introduction

Introduction

Intro

History

Present

Future

Why an LWK?

What is an
LWK?

Linux

Goals

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
3



Multi-million-core computing
Introduction

Intro

History

Present

Future

Why an LWK?

What is an
LWK?

Linux

Goals

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
4

■ Pre-exascale systems will be large and complex

■ Post-exascale system are already in the planning stages

■ Usage patterns, applications, and programming paradigms have to
adapt

■ Same is true for OSes

Can we learn from the past to help us do that?



Extreme scale OS history
Introduction

Intro

History

Present

Future

Why an LWK?

What is an
LWK?

Linux

Goals

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
5

In 1996, ASCI Red at Sandia National Laboratories in
Albuquerque, New Mexico was the first supercomputer to
achieve teraflop performance.

■ It ran Cougar, a Lightweight
kernel (LWK), on its compute
nodes

■ Cougar was based on SUN-
MOS and Puma designed
and developed by Sandia
Laboratories and the Univer-
sity of New Mexico

■ Delivering raw, scalable per-
formance was the key goal of
our efforts Photo courtesy of Sandia National Labora-

tories



Present
Introduction

Intro

History

Present

Future

Why an LWK?

What is an
LWK?

Linux

Goals

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
6

Now we have more than 3 teraflops on a single chip!

■ A modern Intel Xeon Phi
processor packs the perfor-
mance of former supercom-
puters

■ Let’s treat it like one!

◆ Time-sharing so many
resources is no longer
necessary (or efficient)

◆ Space share and pro-
vide resources for ex-
clusive use by applica-
tions



An OS for extreme scale
Introduction

Intro

History

Present

Future

Why an LWK?

What is an
LWK?

Linux

Goals

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
7

■ Future systems will be highly hierarchical

◆ Systems of systems with former supercomputers as building
blocks

■ Machine-wide OSes to manage nodes and work flows

◆ E.g., Hobbes led by Sandia National Laboratories, and Argo
led by Argonne National Laboratory

■ Hierarchy of OSes

■ Need a highly efficient node OS (that is Linux compatible)

◆ E.g., mOS at Intel, McKernel at RIKEN, Kitten at SNL, FFMK
(L4 Linux) at TU Dresden



Why we need an LWK
Introduction

Intro

History

Present

Future

Why an LWK?

What is an
LWK?

Linux

Goals

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
8

LWK properties are (still) important and beneficial

■ Nimbleness

◆ Adapt to new, novel hardware features

◆ Quickly implement new resource management strategies

◆ Adapt and specialize to new programming models

■ Get OS overhead out of the way; provide what hardware can do

■ Simplify

◆ App developers should concentrate on performance and scal-
ability; not OS quirks and unpredictability

■ Make OS research on a real system easy

◆ Not a toy OS for experimentation

◆ Don’t have to learn all of Linux to experiment



Extreme simplification
Introduction

Intro

History

Present

Future

Why an LWK?

What is an
LWK?

Linux

Goals

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
9

■ Process management

◆ Cooperative, non-preemptive task scheduling

◆ Single, or few, task per logical CPU

■ Memory management

◆ Limited paging, no swap, “pinned” memory

◆ Large pages

■ Omit functionality; rely on Full Weight Kernel (FWK)

■ Space sharing

◆ Use massive hardware parallelism, not time sharing

■ Code and binary size

◆ One person can understand and remember the entire LWK



Linux dominates Top 500 list
Introduction

Intro

History

Present

Future

Why an LWK?

What is an
LWK?

Linux

Goals

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
10

Modern systems cannot live with an LWK alone. We
also need Linux.

■ Familiar to developers from their laptops and desktops

■ Has the features requested by users and tool makers

◆ New runtime systems and tools target Linux

◆ Not just Linux system calls, also /proc, /sys, . . .

OS diversity on the Nov. 2015 Top 500 list (% of all systems)



Different design goals
Introduction

Intro

History

Present

Future

Why an LWK?

What is an
LWK?

Linux

Goals

mOS

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
11

LWK FWK

Target massively parallel

systems

laptops, desktops,

servers

Support scalable

applications

everything under

the sun

Development

environment

for

parallel applications business, games,

commerce, etc.

Emphasis efficiency functionality

Resources maximize use fair sharing, QoS

Time to

completion

minimal when needed



mOS Architecture and

Design

Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
12



mOS overview
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
13

■ mOS (Multi-OS) is a research project at Intel

■ Aimed to be the node OS for high-end HPC machines

◆ Extreme scale systems: ten to hundred millions of threads

■ Goal is to provide a solution beyond exa-scale

■ Also, an OS that can be easily adapted to new types of hardware

◆ Try out hardware ideas and quickly support them in mOS

■ An OS that lets us provide support for new runtimes quickly

◆ Future runtimes may want more control of the hardware



Top-level requirements
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
14

1. Foremost is for mOS to scale and deliver the parallel performance
needed in an extreme-scale system.

2. mOS cannot exist unless we can implement and maintain it.

3. Linux compatibility is also important, but comes in after the perfor-
mance and scalability goals have been met.



High-level architecture
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
15

To get the best of both worlds, run both OSes!

■ Dedicate a few cores in a many-core system to Linux

■ The remaining cores run compute intensive processes on LWK

■ Service and compute partitions of ASCI Red in the past are now
on one chip



Lightweight kernels and Linux
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
16

In the past it was possible to achieve performance and scalability. Or,
one could run Linux. But not both.

With an architecture like mOS, it is possible to have a more gradual
path from the upper left LWK corner to the lower right FWK corner.

An application’s choice of which features it wants to use, influences
the overall performance and scalability.



mOS specialization
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
17

■ mOS is not trying to be a better Linux than Linux

◆ Seven of us and six months versus > 2,000 of the best devel-
opers in the world and 20 years

■ mOS specializes for a small segment with unique requirements

■ If Linux did that, it could not cover its whole spectrum



Resource management
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
18

Three stages in mOS resource management:

1. Resources designated at boot time

2. Resources reserved at launch time

3. Resources allocated at run time



Designated resources
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
19

Isolate (take away) resources from Linux

■ When: Early during boot

■ Why:

◆ Ensure resources are available exclusively for LWK

■ Example: lwkmem=96G mos syscall cpus=1.2-27:29.30-55



Reserved resources
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
20

Partition LWK designated resources among
one or more HPC programs

■ When: At program launch time with yod

■ Why:

◆ Prevent first program to reserve all designated resources

◆ Clear indication to program what resources are available; e.g.,
how much memory

◆ No over-commit

◆ Uncertainty under Linux forces use of 80% of memory since
that much is always available

■ Example: yod -M 0.5 -C 0.5 program



Allocated resources
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
21

Make resources available for use

■ When: Allocation request; e.g., mmap()

■ Why:

◆ On return from mmap(), memory is already present and
pinned

◆ Tasks run on specific CPUs; no migration unless requested



System call locality
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
22

■ System calls can execute locally or “remote”

■ Can use Linux or LWK code

Call Linux remotely Call LWK directly Call Linux directly



An embedded LWK
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
23

■ We’re neither trimming Linux to an LWK

■ Nor are we adding Linux functionality to an LWK

■ We are compiling our LWK into the Linux kernel

■ Then, for each logical CPU, decide which kernel has control

Code in memory Code running



Advantages
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
24

A lot of things just work!

■ Linux knows about KNL → mOS knows about KNL

◆ At least enough to boot and run

■ LWK processes are visible on the Linux side

◆ Tools using ptrace() and prctl() work

◆ Although we may break some things in the future as we
tighten LWK side

■ Linux loads binary and deals with dynamic libraries

■ Machine check code; e.g., floating point exception exists and works

◆ No need to port Linux code into a stand-alone LWK and main-
tain it

◆ That is true for a lot of other code the LWK needs and Linux
already has



Disadvantages
Introduction

mOS

mOS

Top-tier

Main idea

LWK vs Linux

Specialization

Resources

Designated

Reserved

Allocated

Embedded

Advantages

Disadvantages

Conclusion

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
25

■ Need more discipline to keep track of Linux

◆ Continuous integration

◆ Similar to keeping a device driver current

■ It may be harder to support future hardware that Linux cannot deal
with

◆ We have not found a (reasonable) example of something like
that

◆ Are planning an experiment soon



Conclusion

Introduction

mOS

Conclusion

Summary

Team

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
26



Summary
Introduction

mOS

Conclusion

Summary

Team

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
27

Extreme-scale systems and their usage are suffi-
ciently different and complex that a new look at the operat-
ing systems that orchestrate their resources is waranted.

Learning from past experiences at the leading edge
teaches us that simple approaches, rather than adding
complexity, lead to success.

mOS is a project at Intel that combines our experi-
ence with lightweight kernels and the need for full-weight
kernel functionality.



People involved with mOS
Introduction

mOS

Conclusion

Summary

Team

4th Workshop on Runtime and Operating Systems for the Many-core Era (ROME)
28

Architecture, design,
implementation, and testing:

■ John Attinella

■ David van Dresser

■ Tom Musta

■ Evan Powers

■ Rolf Riesen

■ Andrew Tauferner

Vision, management, and
guidance:

■ Todd Inglett

■ Pardo Keppel

■ Lance Shuler

■ Robert W. Wisniewski

Collaboration with RIKEN,
Japan

■ Balazs Gerofi

■ Yutaka Ishikawa




	Legal Disclaimer
	Introduction
	Multi-million-core computing
	Extreme scale OS history
	Present
	An OS for extreme scale
	Why we need an LWK
	Extreme simplification
	Linux dominates Top 500 list
	Different design goals

	mOS Architecture and Design
	mOS overview
	Top-level requirements
	High-level architecture
	Lightweight kernels and Linux
	mOS specialization
	Resource management
	Designated resources
	Reserved resources
	Allocated resources
	System call locality
	An embedded LWK
	Advantages
	Disadvantages

	Conclusion
	Summary
	People involved with mOS
	


